
Developing a 2020 Vision for Mathematics Education

The undergraduate mathematics curriculum in the year 2020 should look very different from what we see today, particularly the curriculum in the first two years.  There are many pressures being exerted, both from within the mathematics community and from without, to make significant changes in the current curriculum.  And, those external pressures are likely to become overwhelming, especially if we in mathematics choose not to heed them.  


But, there is also a growing split in what the “first two years” really means.  At some schools, the phrase means two to three semesters of calculus, a semester of differential equations, a semester of linear algebra, and perhaps a semester of discrete mathematics.  According to the 2000 CBMS study [1], about 675,000 students were enrolled in all of these courses, including a one semester applied calculus courses.  Because many students take more than one of these courses simultaneously, the actual number of individuals is likely smaller. Also, between 1995 and 2000, the annual growth rate in the calculus-level courses was about 1%, a period when overall undergraduate enrollment was growing considerably faster.  So the importance of these courses, on an institutional basis, was if anything shrinking. In 2000, about 1,000,000 students were enrolled in courses such as college algebra and precalculus and the enrollment in these courses was growing at an annual rate of about 2%.  Simultaneously, the total enrollment in remedial courses such as intermediate algebra, elementary algebra, and arithmetic was on the order of 1.2 million. 


Thus, for the majority of students taking mathematics courses, the curriculum in the first two years of college consists primarily of remedial mathematics, college algebra, and precalculus.  Moreover, several large scale studies [2, 3, 4] have demonstrated that only a very small percentage of the students who take these courses ever go on to start calculus;  for example, only about 4% -10% of those who pass college algebra do so. Therefore, any discussion of the first two years of the mathematics curriculum has to consider both groups of students.


Furthermore, according to the Statistical Abstract of the U.S. [5], in 2000, only 3,412 of the 457,056 bachelor’s degrees awarded were in mathematics, and a large portion of these were in mathematics education.  This represents about 7 tenths on one percent of the total degrees.  At the two year college level, only 675 of the 564,933 associate degrees awarded were in mathematics, or about one tenth of one percent.  Whether we like it or not, mathematics is a service department at virtually every college in the country and we have an obligation to listen to the partner disciplines whose students we serve and to provide the kinds of courses those students need.

In view of these issues, our vision for the mathematics curriculum for 2020 is one that makes students aware of the utility of mathematics as a tool for citizenship and leadership.  We want all students to develop a love of learning and a sense of intellectual curiosity; the ability to think critically and to solve problems; and to be able to make informed decisions based on the use of quantitative skills and knowledge.  Moreover, these should be the goals no matter what (if any) additional aspirations students have for the subsequent study of mathematics.

High School Mathematics and Implications for Collegiate Mathematics
Historically, there has been a roughly 50% drop-off in mathematics enrollment from any course to the subsequent one, both at the secondary and the collegiate level.  However, according to some recent studies (Usiskin [6]), the drop-off rate from first year algebra to second year algebra in high schools has been reduced dramatically to the point where about 90% of the students to take first year algebra continue on to second year algebra. Thus, students are taking much more mathematics in high school than they ever did before!  


Further, the ways that mathematics is being taught are changing dramatically.  Virtually no student comes out of high school today who has not used technology on an everyday basis.  And that technology gives them a very different view of what mathematics is all about, one that focuses far more on graphical and numerical aspects of the subject than most of us in the colleges can readily appreciate.  

The secondary classroom has also become much more student-centered with an emphasis on group work and collaborative learning, and the associated focus on oral and written com​​mu​nication. There is a far greater emphasis on conceptual understanding and mathe​matical problem-solving via practical, real-world applications and mathematical modeling.  In the process, there has likely been a somewhat diminished emphasis on the development of routine algebraic skills.  


As a result, students coming to college now have very different perceptions of what mathe​matics is about and how it should be taught; they view mathematics in a much more sophisticated way than students whose preparation has essentially focused on rules of factoring polynomials.  They also expect to be more actively involved in the mathematical development in class, and so are not prepared to sit passively and watch things appear on the blackboard.  There are two ways to respond to this.  One is to capitalize on what the students now bring to college mathematics and build on it;  the other is to focus on the traditional skills that today’s students may lack (and likely do not need) and relegate them to a remedial track that seemingly leads almost all of them into a mathematical limbo from which there is little hope of exiting.


Another significant change in the enrollment patterns in the schools has to do with the dramatic growth of calculus.  In 2003, approximately 213,000 students took one of the two AP calculus exams.  Reportedly, between two and three times as many students take calculus in high school, but do not take an AP test. Thus, some 700,000 students take calculus in high schools today, which exceeds the total enrollment in all collegiate courses from calculus through differential equations, linear algebra, and discrete mathematics!  What’s more, the number of students taking calculus in high school has been growing at an annual rate of about 7%, compared to the annual growth rate of 1% in the colleges.  Calculus has truly become (for better or worse) the capstone of the secondary school curriculum.
The Courses Below Calculus
A variety of projects have developed alternative courses at the precalculus, college algebra, and developmental algebra levels that place a lessened emphasis on many of the routine algebraic skills, particularly those associated with factoring polynomials and operations with rational expressions.  Instead, these new courses focus more on conceptual understanding of the fundamental mathematical ideas – variable, function, behavior of functions – as well as on realistic applications of the mathematics.  They often feature "new" mathematical content, such as 

·  the use of real-world data (once thought to be the domain of statistics) and the notion of fitting a function to the data), 

· aspects of probability, 

· recursion and iteration (the mathematical language of spreadsheets), 

· substantial applications of matrix algebra that go well beyond merely solving systems of linear equations.  

In many ways, this reflects a new paradigm for the mathematics that is actually used in practice.  On the left of the table below, we show a representation for the mathematics used by practitioners in 1960, say.  Virtually every problem considered was continuous and was approached from the point of view of seeking a closed-form, deterministic solution.  Relatively few problems were discrete in nature; some were stochastic in the sense of having a random component.  The mathematics curriculum of the time typically mirrored this paradigm closely.  At the start of the   new millennium, a very different paradigm exists in terms of the mathematics used in practice, as shown to the right in the table – most problems now have discrete components; even continuous models must be discretized to permit computational solutions.  Virtually every problem today has a random component – there is always some degree of uncertainty.  Yet, the mathematics curriculum has barely adapted to reflect these new needs.  For the most part, we still give the same content, though there is a little more emphasis on statistical reasoning and some discrete topics have worked their way into the curriculum.  One of the major challenges we face is integrating more of these discrete and stochastic ideas and methods into the curriculum.  This challenge is discussed in detail in Dossey [7].  Our 2020 vision for the mathematics curriculum is one that mirrors the paradigm for the mathematics used by the practitioners in this new century.
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Just what does this mean?  People must be able to interpret graphs and tables.  They must understand the concept of a functional relationship and how to use it intelligently to make predic​tions.  They must understand relative growth or decay rates (the real use of percentages); they must know about increasing or decreasing rates of growth (concavity).  They must be aware of the notion of accumulation.  They should be aware of the notion of parameters and how changes in parameters affect the behavior of a process.  Many must know something about the modeling process.  

But very few people must be able to factor something like x8 - y8, let alone


cos8 t - sin8 t.
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Very few must be able to reduce

It is easy to picture an academic research mathematician whose teaching load consists exclusively of liberal arts courses or introductory statistics along with virtually any upper division or graduate course who will never need to use any sophisticated algebraic skills.  Equally important, much the same can be said about most engineers and scientists.  It will be increasingly true in the future as their training in engineering and science depends more heavily on technology – DE solvers and plotters, CAS systems, and so forth.

Does this mean that there is no longer a need to teach algebra?  That students will be unable to perform any algebraic operations whatsoever?  Certainly not!  But, there likely will be a very different balance.  Certain algebraic concepts and techniques will continue to be taught and, if anything, are likely to be emphasized more than in the past.  For instance, students require a far deeper understanding of algebraic notation, particularly in the sense of functional notation, than most currently develop.  Similarly, operations with properties of exponents and logarithms fall into this category because they are needed to solve many of the types of problems that are getting greater emphasis.  

But many of the other skills, particularly those associated with solving equations, will receive far less attention.  Why attempt to factor a polynomial to find its roots if you can locate any real root to any desired degree of accuracy by graphical means or obtain closed form expressions for rational roots using a CAS system?  Why apply an inverse trigonometric function to find just one possible solution to a trig equation if you can locate all solutions graphically?  Why solve a system of linear equations by hand if it can be solved by converting it to a vector-matrix equation and pushing the appropriate keys on the calculator?

What we need is a redefinition of the word “algebra” and the courses in which it is taught.  Algebra should be viewed as far more than just a collection of manipulative tools for moving symbols around and for solving carefully constructed equations.  This is especially true in today’s fast changing world.  Traditional courses at the precalculus and college algebra level were designed primarily to develop algebraic skills that once were essential for success in later courses.  But the reality is that only a small fraction of the students who take college algebra courses ever start mainstream calculus. Furthermore, the wide availability of technology and the changing require​ments, especially in the partner disciplines, requires a rethinking of this paradigm.  Currently, students in upper division courses in engineering and the sciences do relatively little with pencil and paper mathematics; instead, they focus on developing mathematical models to describe real-world phenomena.  These models typically involve differential or difference equations, matrices, or often probabilistic simulations.  The students examine the behavior of the solutions, particularly as the parameters underlying the phenomena change.  

Simultaneously, students in business, the social sciences, and the biological sciences are expected to recognize trends in sets of data, construct appropriate mathematical models to fit the data, and make corresponding predictions based on the models developed.  This is actually remark​ably similar to what students in lab courses have been doing for centuries; the difference is that the stu​​dents in the business and social science courses typically use spreadsheets for the analysis rather than hand-drawn graphs.  These activities are at the heart of the recommendations made to the mathe​​matics community by leading educators from most of the partner disciplines in [8].  
In general, the primary emphasis on algebraic manipulation in traditional preparatory mathematics classes does not provide the foundation that students now need for all of these disciplines, nor does it adequately prepare them for the new calculus.  Instead, a broader prepara​tion is needed, one that better reflects the practice of mathematics.  Students must learn to:

1.  Identify the mathematical components of a situation (i.e., model it).

2.  Select the right tool (paper-and-pencil, graphing calculator, CAS package, spreadsheet, 

etc) to solve the problem.

3.  Interpret the solution in terms of the original situation and, if necessary, change the 


assumptions used (i.e., introduce additional factors) in the model.

4.  Communicate the solution to an individual who likely knows less mathematics, but 


who pays their salary.

What, then, should a modern mathematics course look like at this level?  

· Above and beyond all else, students must know what a variable is and what a function is.
· They must see that the goal of studying mathematics is for problem solving and that they need to be able to connect the mathematical concepts and skills they learn to the fields where the problems arise.
· They must see variables as representing the values of quantities, and in order to meet the needs of other disciplines, the letters used for variables should not be only x and y.

· They must achieve a better understanding of the difference between independent and dependent variable.

· They must see functions as formulas, as graphs, as tables, as verbal depictions, and as dynamic processes that describe realistic phenomena. They must understand how each of these representations gives a different perspective and they must know how to move between any one representation and another.

· They must come to understand the limitations in any given function, in the sense of domain and range (but not merely by looking for points where one divides by zero).
· They need to understand that uncertainty and risk are essential components of life.
· They need to recognize that, in solving many problems, the mathematics required is discrete in nature while other problems call for methods that are continuous.
· They need to recognize certain classes of functions, especially linear, exponential, power, simple polynomials, and periodic and this recognition should include the formulas and the graphs.

· They need to understand fundamental ideas about the behavior of functions – growth versus decay, concave up versus concave down and what that means in terms of the increasing or decreasing rate of growth or decay.  Ideally, if a student sees a set of data, he or she should be able to match it with appropriate candidates for functions that behave in the same manner.

· They must understand the effects that the parameters in the expression for these functions have on the behavior of the function;  the slope of a line is not just so many boxes over so many boxes -- it depends on the scale, it tells you how fast the quantity is rising or falling.  They should understand the effects of transformations on a function -- stretching and shifting.

· They should see how questions that naturally arise from contexts in a predictive sense lead to equations; they should have a much better understanding of what it means to have a solution to an equation.

· They should become comfortable with a variety of different kinds of tools – symbolic, graphical, and numerical – for solving equations.  For example, any equation involving a single variable can be solved using graphical or numerical methods to any desired degree of accuracy; certain relatively simple kinds of equations can be solved exactly using symbolic methods.

· They should also understand the (current) limitations of these systems.

· They should see how systems of linear equations, for instance, arise constantly throughout mathematics, not just during a unit on the subject.  They should spend less time on the mechanics of finding those solutions, particularly on systems of three equations in three unknowns or larger, but should spend far more time on understanding where the systems come from and what the solutions mean.

· They should become familiar with the ideas of recursion and difference equations, because the dominant mathematical tool in virtually every other discipline is the spreadsheet (not the graphing calculator and not CAS packages such as Mathematica and Maple) and the mathematical topic needed to utilize a spreadsheet wisely is recursion.

· They should develop the ability to interpret their answers to solve problems arising from contexts and should develop the judgment to recognize when answers are reasonable or not.

· They should develop their ability to communicate mathematics, both orally and in writing.

In the minds of many in the mathematics community, the courses below calculus are intended to prepare the students to go on to calculus. At many individual institutions and statewide university systems, a course in college algebra is a general education requirement. For many disciplines, particularly in the social and biological sciences, a course at the college algebra or precalculus level is a program requirement—even though the particular algebraic skills usually taught in these courses often are not used in any subsequent courses in those disciplines. As such, the college algebra or similar course becomes the last formal mathematics experience for many students. Moreover, even when mathematics arises in the other disciplines, it does not look like the mathematics that students saw in their introductory college mathematics courses — so that most students do not make the connections that would allow them to apply the mathematics they may have learned. Thus, the standard introductory mathematics courses rarely provide any long-term benefits to the majority of students.


And yet, as one reads through the comments and recommendations made by faculty in other disciplines in the Curriculum Foundations document [8] prepared by CRAFTY, it is evident that most of the workshop participants are talking about the courses below calculus and that they believe strongly that mathematics at that level has much to provide to their students.  And, all of those fields, as well as many others that are “softer” in terms of using mathematics, are increasingly more and more quantitative.  But, they need a different flavor of mathematics, one that much better reflects the needs of those disciplines and not one that focuses on algebraic manipulation.  In fact, what they need is something very similar to the emphases listed above.


Garfunkel and Young [9.10] long ago sounded the alarm to the mathematics community about lost courses – they reported that about 50% of advanced math courses were being taught outside of mathematics because the math departments often would not accommodate the needs of those other disciplines.  The courses below calculus are today’s bread-and-butter courses — they are cheap to run and they enroll tremendous numbers of students.  Without these courses, mathematics departments would not be able to survive financially at many colleges and universities.  But if the mathematics community does not adapt these courses to meet the actual needs of the other departments, and persists in thinking of these courses as leading toward calculus, it is easy to foresee that within a decade or two, mathematics will, with good reason, lose most of these course offerings. 
Calculus and Above
Over the last decade, there has been considerable discussion [7] in the mathematics community about the so-called seven into four problem – the fact that during the first two years, today’s students in mathematically intense majors need three semesters worth of calculus, differential equations, linear algebra, discrete mathematics, and some probability and statistics.  How, then, do we compress what has traditionally been seven semesters worth of coursework into the four semesters available given the constraint that other disciplines cannot relinquish the time/credit hours from their own courses?  The West Point mathematics curriculum has been one model for addressing this problem by looking for ways to integrate the appropriate material from the seven semesters into four semesters.  Another approach at some highly selective schools is based on the point made above about the large number of students who have taken calculus in high school – these departments have responded to that by compressing the three semesters of calculus into two semesters.


However, there is another side to this issue that is critical to consider.  Clearly, mathematics departments are under intense pressure to compress more material into fewer courses because there simply is much more mathematics needed in today’s increasingly quantitative world.  In the same way, almost every other discipline is under comparable internal pressures to stuff more material into their own courses because the amount of information and techniques needed (not necessarily only mathematical information and techniques) is also increasing rapidly, often more rapidly than the variety of mathematical methods needed.  As such, these other departments are themselves looking for ways to provide more class-time (i.e., credit hours) for their students.  
So, looking ahead to 2020, several distinct scenarios are possible.  One of them is that the courses at the calculus level and above will have changed dramatically, in conjunction with input from the other disciplines.  Judging from the recommendations from those disciplines in the Curriculum Foundations report [8], these courses will be leaner, will have considerably more emphasis on conceptual understanding and less on routine manipulation, will focus on realistic applications via mathematical modeling, and will involve more active student participation in the learning process.  The precise details of the content of these courses are something that will evolve over time, though it will have to be a rather rapid evolution.

The other scenario is a far more unpleasant one in which other disciplines decide that mathematics courses are superfluous because they do not explicitly meet their needs and simply incorporate the particular mathematical techniques into their own courses or begin offering their own versions of these courses.  If that happens, mathematics departments will be left with a few upper division offerings for the very small number of math majors and a few developmental-level offerings for large numbers of students who likely have little need for the skills they are being taught.  Of course, if the other departments that mandate these college algebra-level courses come to realize that the courses do not really serve their students well, there may be vanishingly little left for the mathematics faculty to teach.
Concluding Remarks 

As a profession, we in mathematics have been used to a seamless transition between high school and college mathematics because we all offered the same courses in the same spirit and we all had been through those courses ourselves as students.  The reform efforts at all levels are creating a very different, though equally seamless, transition between high school and college, and between mathematics and the increasingly quantitative disciplines that we serve.  Our 2020 vision for mathematics education looks forward to the day when this new smooth transition between high school and college and between mathematics and the other disciplines has become the norm.  But in the process, we should all expect a lot of bumps as the pieces rub against each other until they generate the kind of perfect fit that we would like.  

The process of achieving the goals and visions described above will not be easy.  There certainly will be obstacles both from within and outside of the mathematics community.  From within, we can expect inertia on the part of some professors and teachers who will resist making significant changes in what they teach and how they teach it. From outside the mathematics community, some of the major obstacles we face are general education requirements, placement tests, and transfer/articulation agreements that are married to the existing content of the first two years of mathematics instruction.  In order to have significant changes to the mathematics curriculum means having to change some of these requirements and that requires changing the attitudes and beliefs of the various groups who are responsible.  Additionally some faculty outside of the sciences and engineering may not have the quantitative background or desire to work in a collaborative manner with us to achieve these curriculum changes.

 
These curriculum changes will be achievable only by convincing all stakeholders (mathematics faculty, faculty from partner disciplines, college administrators, students, textbook writers, the testing industry, parents, prospective employers, and external bodies that set mathematics requirements) that there are great benefits to be achieved from implementing this vision.  Faculty in all disciplines should be encouraged to participate in the development of meaningful interdisciplinary projects.  Our colleagues in the mathematics community need to have this vision regardless of any reservations about the motivation of the students.  And it is especially crucial that textbook publishers need to see that a different approach to learning mathematics is going to require a different kind of textbook. 

What is clear also is that the mathematics students coming out of this new curriculum model will be very different from the traditional type of mathematician.  Where we turn first to pencil and paper for almost any mathematics problem, these students will naturally turn first to some kind of graphical tool to investigate what a process looks like or whether an idea makes sense.  They will turn to the algebraic techniques only if there is a need to continue or for general verification. Moreover, they will perform much of that algebra using CAS technology rather than pencil and paper.  Certainly, the next generation of mathematicians will not be clones of ourselves; they will bring a very different vision to mathematics and related areas.

But what of these relatively few people – the math and physics majors or those computer science majors who may be called on to program future generations of Mathematica –  who  will need the full array of symbolic operations?  It seems unreasonable to subject everyone to learning those skills, particularly as prerequisite skills to courses that may no longer require them.  We have seen that this doesn't work well for the overwhelming majority of students when such skills were essential.  Now that the algebraic skills are less necessary for success in calculus and other courses both inside and outside mathematics, there is little reason to subject most students to them.

Somewhat facetiously, it may not be unreasonable to look forward to the day in the not-too-distant future when some of the large research universities will begin offering junior level courses in advanced manipulative algebra for the few who need it while the overwhelming majority have been exposed to more fundamental mathematical reasoning, mathematical ideas, and realistic applications long before.
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