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After many years of standing in regal splendor among subjects in mathematics, calculus is now coming under intense pressure for change from groups both inside and outside the field.  There is a need to put greater emphasis on conceptual, intuitive and numerical ideas while downplaying some of the purely mechanical procedures that have undermined generations of calculus students and which can now be done using Symbolic Manipulation/Computer Algebra systems.  This turmoil presents those of us in the mathematical community with a rare opportunity to look at calculus from a variety of different and potentially exciting new perspectives.  At the same time, it provides us with the chance to undo some of the extreme compartmentalization in the undergraduate mathematics curriculum that has kept various branches of the subject totally disjoint, a particularly unhealthy situation.


One such approach is to consider the application of probabilistic ideas to calculus, thereby combining the deterministic and the stochastic in some particularly fascinating and useful ways.  This can be especially valuable when we consider the increasingly large number of students in calculus who have been exposed to probability in high school, who have taken courses in probability and statistics in college or who have encountered probability in courses in discrete mathematics.


Without a doubt, the most obvious application of probabilistic ideas in calculus is the use of Monte Carlo simulations to approxi-mate areas of regions in the plane, or more generally, the value of any definite integral.  [See, for instance, Gordon (1986), pp 93 - 98.]  As shown in Figure 1, the region A in question is embedded in a rectangle, a series of randomly generated points inside the rec-tangle is produced, and the proportion of these points that fall within the region A is calculated.  When the number of points n is sufficiently large, this proportion is a good approximation to the ratio of the area of A to the known area of the rectangle.


Figure 1


While providing an interesting prespective, this type of Monte Carlo application is not especially useful since we have so many other more efficient ways to approximate an area in the plane.  On the other hand, when one deals with multiple integrals involving seven or more iterated integrals, Davis and Rabinowitz (1984) indicate that Monte Carlo methods are indeed the best choice for numerical integration.


There are many other interesting applications of Monte Carlo methods throughout calculus, many of which are surprisingly accurate.  In addition, such simulations also provide the opportunity to approach some topics in calculus from an exploratory point of view which leads to fascinating insights on the theory.  In the following, we will consider a variety of such applications.

Riemann Sums


In the Riemann Sum,




   n-1




Σ     f(Xj) ▴ xj



  j=0

based on a partition x.0* = a, x.1*, x.2*, ..., x.n* = b of the interval 1a,b2, we emphasize that the point x.j** can be any point within the j*th. subdivision 1x.j*,x.j+1*2.  Invariably, though, we work with either the left endpoint, the right endpoint or the midpoint of each subdivision when evaluating a Riemann Sum.  However, if a computer is available, it becomes a very simple task to utilize a Monte Carlo method to generate a random point x.j** in each subinterval.  For example, in BASIC, the appropriate statement to generate a random point between any two limits U and V is


R = (V - U) * RND + U

and this can be used in a simple program to approximate the value of any definite integral.  To illustrate the approach, suppose we approximate 


.0*  sin x dx                         (1)

whose value is 2.  If we use n = 20 subdivisions with left endpoints, then the approximation is 1.9956658;  with right endpoints, the approximation is 1.9958862;  with midpoints, the approximation is 2.0020576.  By comparison, on three different runs using randomly generated points within each subdivision, we obtained approximations of 1.9813915, 1.9948370 and 1.9989726.  Thus, we see that the simulation approach is often comparable in accuracy to that obtained by using either endpoint and is almost as accurate as the midpoint rule.  The Monte Carlo value can aslo be more accurate, as in the third run.  Moreover, this level of accuracy was achieved with a very small number of points (n = 20);  greater accuracy is obtained with a larger number of points.


As long as we are discussing Riemann Sums, there is another application of Monte Carlo simulations that is worth mentioning.  We tell our students that the Riemann Sum can be based on any subdivision of the interval 1a,b2, but invariably specialize to a uniform partition for ease of computation.  However, it is possible to consider sets of randomly generated partitions.  Suppose we consider such a possibility as it applies to (1).  We can have a computer generate n-1 random points between 0 and    , order them numerically, and evaluate the Riemann Sum based on this random partition using the midpoint rule, say.  In several runs of such a program, we obtained values of 2.00695, 2.00559 and 2.00930 as approximations to the definite integral.  Clearly, these results are comparable in accuracy to those obtained by our previous methods.


Further, we could certainly combine these two probabilistic idea to construct a randomly generated partition of the interval and then use a randomly generated point x.j** in each subinterval.  We note that the corresponding results tend to be somewhat less accurate, however.  Nonethelesss, we feel that such exploratory activities are well suited for students to conduct in a computer laboratory setting or as an out-of-class individual project.


Still another interesting possibility in applying random processes to approximate a definite integral is to use a random subdivision when applying the trapezoid rule.  We also leave this as a suggested calculus laboratory project for students to determine how the level of accuracy of this approach compares to the standard trapezoid rule or to any of the variations on the Riemann Sum.

Maximizing and Minimizing a Function


The foundation of any computer graphics program for calculus is a routine for generating the graph of an arbitrary function f on a given interval 1a,b2.  To do this effectively, the program should do its own scaling -- that is, determine the maximum and minimum values for the function on the interval so that an appropriate range can be set up for graphing the function.  The most obvious way to do this is a systematic or deterministic approach.  First, subdivide the interval into n pieces, x.0* = a, x.1*, ..., x.n* = b.  (Usually, n = 319 or 639 for the IBM PC or n = 279 for the Apple, since these numbers represent the number of horizontal screen locations on the respective graphics screens.)  Second, evaluate the function at each of these points and select the least and greatest values to represent the minimum and maximum, approximately.  Unless the function has some exceptional behavior within the interval, the method is quite accurate and is usually adequate for the task.


An alternative procedure is to use a series of n randomly generated points within the interval instead of n uniformly spaced points.  The results are surprisingly accurate.  For instance, suppose we consider the function f(x) = sin x on 10, 2  2.  If we apply the deterministic approach with n = 319, then we obtain approximate minimum and maximum values of -0.9999878 and 0.9999879 respectively.  On the other hand, when we use the Monte Carlo appraoch with n = 319 also, the results of three different runs are:


Minimum = -0.9999929
Maximum = 0.9999961


Minimum = -0.9999962
Maximum = 0.9997474


Minimum = -0.9999994
Maximum = 0.9999772

Clearly, these results are at least comparable, if not better in accuracy.  


An appropriate student investigation would be to see the effect of using different sample sizes for n on the accuracy of the approximation.  For instance, is it possible to obtain comparable accuracy with fewer random points than uniformly distributed points?

Mean Value Theorems


The Mean Value Theorem is typical of a variety of results in calculus which guarantee the existence of a particular number.  In this case,

f'(c) = 1f(b) - f(a)2/(b-a),

where c is between a and b.  Such cases provide an opportunity to experiment with the results on a probabilistic basis.  For example, we might inquire just how literally we can take the word "mean" in the Mean Value Theorem?  Suppose we consider the function f(x) = x e*-x. on the interval 10,22 and randomly generate a set of numbers in the open interval (0,2) to represent possible values for c, calculate f'(c) for each of them, and then compute the arithmetic mean of these values.  On three different runs of a Monte Carlo simulation based on n = 10,000 random points in each, the values 0.13708, 0.1331 and 0.1366 were obtained.  By comparison, according to the Mean Value Theorem, f'(c) = e*-2. = 0.1353 and so we indeed see that the mean or average value of the derivative is apparently equal to the expression 1f(2) - f(0)2/(2-0).


Clearly, there must be a valid mathematical reason for this agreement.  We know that the mean or average value for a function f on an interval 1a,b2 is given by

.b-a*  .a*  f(x) dx

Therefore, the mean value for the derivative, f'(x), is given by


     .b-a   a*  f'(x) dx  =   .b-a*  f(x)  .a*



      =  .b-a*  1f(b) - f(a)2

and this is precisely the value predicted by the Mean Value Theorem.  Thus, having introduced the notion of the average value of a function via a definite integral, we now have a very nice opportunity to reconsider the Mean Value Theorem from a totally different perspective considerably later in a calculus sequence.


Moreover, we can obviously apply the same approach to simulating an average value for a function f on an interval 1a,b2 and this clearly can be used to "verify" the Mean Value Theorem for Integrals.  Perhaps more interesting is the result of reversing this procedure.  That is, since

.b-a  a*  f(x) dx  =  f(c)

for some c   (a,b), we can write

.a * f(x) dx    (b - a)  mean of f(x)

and have an alternative method for simulating the value of a definite integral.  Admittedly, this is much slower than the techniques discussed earlier (it involves a much larger number of random points) and so has no practical value.  Nonetheless, it is interesting to emphasize how all these ideas are interrelated

Testing Conjectures via Simulations


Continuing in an exploratory vein, we next consider the Mean Value Theorem as a special case of a Taylor series expansion for a function f with n = 1.  Therefore, with n = 2, we have

  f(x) =  f(a) + f'(a) (x - a) + f"(c) (x - a)*2/2

where c   (a,b), using the Lagrange form for the remainder.  Therefore, solving for f"(c) and replacing x with b, we obtain

f"(c) = 2 3 [f(b) - f(a)]/(b - a) - f'(a) 4/(b -a)  (2)

Consequently, it makes sense to simulate the arithmetic mean of the values for the second derivative f"(x) on an interval 1a,b2 to see how close their average comes to the value given in (2).  Using f(x) = x e*-x. on 10,22, we find that equation (2) yields a value of -0.2325442, while several simulations for the mean value of f"(x) produces values of -0.5705673 and -0.5640687.  These latter results are quite consistent and so clearly indicate that the conjectured possibility does not hold.  This demonstrates how such Monte Carlo simulations provide a potentially valuable tool in testing mathematical hypotheses.


There are a wide variety of additional topics in calculus which can be similarly explored in this manner, especially in a computer laboratory setting.  For instance, students can be told that a different generalization of the Mean Value Theorem, Cauchy's Mean Value Theorem, exists for two functions f and g on an interval 1a,b2 such that

1f(b) - f(a)2/1g(b) - g(a)2  =  f'(c)/g'(c)

for some c   (a,b).  They can then be asked to investigate whether or not the word "mean" actually means average here too.  


Further, a particularly immediate and effective application of the Intermediate Value Theorem is to introduce the bisection method to locate the zeros of a function.  A similar process can be considered in which a random point is selected in each subinterval rather than the midpoint.  Students can be asked to determine whether the resulting process also converges to the desired root and if so, how does the rate of convergence appear to compare to the bisection method.


Whatever the outcomes of such investigations, we believe that such experimentation can be an extremely valuable experience for calculus students.  

     Incidentally, the authors will be happy to provide listings for the simulations programs described in this article to interested readers.
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Caption for Figure 1:

When a series of randomly generated points is produced within the given rectangle, the proportion that fall within region A is an approximation to the ratio of the area of region A to the known area of the rectangle.
