 SEQ CHAPTER \h \r 1
CALCULUS MUST EVOLVE

Sheldon P. Gordon

Address:  Department of Mathematics, Suffolk Community College, Selden, NY  11784

Abstract:  Calculus must evolve or face the prospect of becoming irrelevant.  The minimum level of classroom technology now available requires us to rethink the content of our calculus courses.  Many of the standard topics have become less important.  Other more fundamental mathematical topics can, and should, be emphasized in their place.  
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The academies in ancient Rome undoubtedly had the equivalent of graduate level courses in long division.  Only the most mathematically gifted individuals were able to cope with its intricacies.  It took the infusion of what was essentially a new technology, the Arabic system, to force a change in how long division was done and consequently who could use it.  Currently, the precollege community is debating the implications of a newer technology, the hand-held calculator, on this same venerable subject.  


The NCTM Standards [2] call for a marked increase in the use of calculators to remove the repetitious drudgery of performing endless computations of operations such as long division.  The intent is to strike a new balance in the curriculum: do enough reasonably simple problems to develop facility with the division algorithm, abandon the time spent on more complex problems such as dividing five digit numbers into seven digit numbers, and spend the time gained to teach an understanding of what the division operation really means and how it is used.


A comparable debate on the implications of technology is now affecting the undergraduate mathematics curriculum.  In this article, we discuss some of the implications of technology on calculus and argue that a new balance must be reached among the level of understanding students should achieve, their appreciation of the mathematical ideas, their mastery of standard manipulative techniques, and their intelligent use of appropriate technology to supplement their pencil and paper work.  


Rather than focusing on the cutting edge of technology as applied to mathematics, we will consider what has almost become the minimum level of classroom technology, the hand-held graphing calculator which now costs roughly the same as a standard calculus textbook.  Far more is available, both in academic settings and out in the workplace.  Further, today's graphing calculator will surely be supplanted by considerably more sophisticated hardware and software products in the foreseeable future.  What does today's minimum level of technology imply regarding the teaching of some of the standard topics in introductory calculus?


To begin, one of the most important topics is curve sketching.  But, what is the point of having students perform a series of exercises, each typically taking 10 to 15 minutes, whose sole end-product is to produce the graph of a large variety of functions?  Essentially the identical graphs can be produced in under 10 to 15 seconds by pushing several keys on the calculator.  For that matter, is the purpose of the standard hand-graphing exercises just to produce the graph?  Obviously not!  Is their purpose to give the students exercises for practicing differentiation?  The given functions are usually of such a simple nature, polynomials or power terms, that there is little facility gained in differentiation.  Is the purpose of these exercise to practice factoring polynomials?  (We used to be very careful not to assign any that do not have integer roots or the students were in trouble.)  


The purpose of such exercises should be to have students learn how to apply the ideas of calculus to understand the behavior of the function.  The appropriate use of technology should be to change the focus of such exercises.  The end-produce should not be the graph of the function;  it should be an analysis of that graph.  Students should see how the derivative explains the behavior of the function.  They should come to appreciate the kind of global and local information that can be deduced about the function.  These are much deeper and more meaningful questions than the standard ones which only ask the student to produce a picture by applying a multistep rule by rote.


Another standard chestnut is the mass of hoary differential problems.  But, it's a little hard to motivate students to use the differential to approximate the value of 3√28 when they can get what is to them the exact answer by pressing several keys on the calculator.  Consider even the so-called applied problems involving differentials, such as what is the approximate change in volume of a balloon as air is blown in when the radius changes from 8 to 8.1 inches?  Would anyone really use the method of differentials to answer such a question with a calculator at hand?


Instead, we should focus on one of the basic concepts of calculus, that of the local linearity of functions.  The tangent line represents the best linear approximation to a curve near a given point.  With the zooming features of the graphing calculator, it is apparent what this means.  With sufficient magnification, it is clear that any differentiable function is essentially linear.  In fact, the lack of such linearity under magnification is a simple criterion for non-differentiability.  In turn, this emphasis allows us to introduce early the notion of approximation of functions, one of the most significant ideas in mathematics.  Thus, again, the availability of the new technology should allow us to focus on the underlying ideas of calculus, not on the mechanics of unreasonable or artificial problems.


Still another major topic in calculus is optimization. From the point of view of our students, the hard part of any such problem is transferring the given situation into a mathematical expression.  The subsequent analysis of the function using calculus to find the optimal solution is then relatively just a "piece of cake".  


Consider now the following approach which is certainly feasible in some senses:  Once the student has devised the function to be optimized, he or she can enter it in the graphing calculator, zoom in on the obvious points where the function achieves its maxima and minima points and obtain extremely accurate estimates of these values.  A newer model of the graphing calculator accepts a function as input and graphs any combination of the function and its first and second derivatives.  Thus, a student could apply some ideas from calculus to inspect the graph of the derivative to locate all of its zeros and then locate the corresponding points on the graph of the original function.  


There are two important things missing from these scenarios.  One is the loss of possible exact solutions such as π/√7.  From an aesthetic point of view, the student would lose something important about mathematics.  The other loss is the fact that the above procedures can be implemented without formally applying any ideas or methods that remotely resemble calculus.  This certainly strikes us as being wrong.  Nevertheless, in their future careers, our students are likely to resort to such narrowly focused approaches rather than the more general mathematical techniques we teach;  if for no other reason, they will do this because the formal techniques will appear unnecessarily complicated and artificial when applied to the standard types of problems.


Our solution is to broaden the types of problems that we consider with optimization.  Rather than focusing on Farmer Brown and his variously constrained pastures, we advocate considering more sophisticated situations that require the use of calculus and a thorough understanding of the information provided by the derivative.  One such possibility involves studying families of curves based on the use of parameters.  For example, what is the effect of the parameter a on the family of curves given by 


f(x)  =  e-x²/a ?

The graphing calculator can then assume a more appropriate role as a tool to obtain information about selected members of the family.  It can provide the visual understanding from which intelligent mathematical questions can be formulated.  Then, and only then, does it make sense to apply the ideas of calculus to a far more substantial mathematical problem, one involving optimization of a one or two-parameter family of curves.  


Still another major area in calculus is integration.  For the most part, there are two primary reasons for knowing how to integrate.  One is to apply the fundamental theorem to evaluate the definite integral that represents some quantity of interest.  The other is to solve a differential equation.  Let's consider each of these separately.


From an historical perspective, computation was always incredibly time consuming and subject to errors at each step.  As such, people were intent on finding methods to avoid having to perform heavy computation.  The fundamental theorem provides an amazingly powerful tool to do this.  Once you find an antiderivative of a given function, you can evaluate a definite integral trivially.  Consequently, for several centuries, the search was conducted to find as many antiderivatives as possible and comprehensive tables of integrals demonstrate how productively mathematicians have prosecuted this search over the last 300 years.  


How many of the integrals in these tables have you ever used?  More importantly, how many of these formulas are your students ever likely to use?  Vvirtually every one of these formulas has been implemented in today's computer algebra systems and such packages are now being incorporated in the top-end calculator models.  If all that our students are going to do is to evaluate definite integrals, then they can push the appropriate buttons on a computer keyboard and get the corresponding antiderivative in closed form in seconds (for the harder ones).  But even that may be unnecessary.  Using a hand-held programmable calculator, students now have at their disposal simple programs to evaluate any definite integral using a Riemann sum or Simpson's Rule.  When they are on the job, they will have access to considerably faster and more effective software packages to approximate any definite integral.  
Therefore, what should we teach?  Should we spend a month or more developing their skill at integration techniques that are rapidly becoming outmoded?  Or should we emphasize more fundamental mathematical ideas?  For example, what is a definite integral?  How does it arise in a wide variety of applications?  What does it tell us about the quantity being investigated?  How do we evaluate it?  What does the antiderivative tell us about a function?  At the same time, it makes sense to use the Riemann sum approach as a vehicle for enhancing student understanding of the notion of convergence of a sequence of values.  


We certainly should not abandon all ideas about the antiderivative and ignore the fundamental theorem.  It is still a fundamental mathematical principle.  But, it is not necessarily the fundamental technique for evaluating a definite integral.  What we need is to achieve a new balance between the mechanical techniques of integration and the mathematical concepts.  Students must develop a sufficient understanding of what antiderivatives are; they must learn how to use them; and they must develop the ability to find antiderivatives for reasonably simple functions.  But, simultaneously, they should develop a deeper understanding of the limitations of using the antiderivative and the fundamental theorem and so develop the judgment to know what approach to use when.  Further, this can be achieved in the context of more interesting situations than we often consider.  For instance, who really cares about the arc length of f(x) = x3/2; its only advantage is that it is integrable in closed form.  Yet, the arc length of an ellipse or the length of an arch of the sine curve are inherently far more interesting to students; their disadvantage is that one cannot integrate the resulting expressions in closed form.


But, there is also differential equations as a major rationale for having all the traditional skills with techniques of integration.  Or is that still such an all-powerful reason?  Engineers and scientists routinely face nonlinear differential equations which cannot be solved in closed form.  They must be content with tabular results based on a variety of numerical procedures such as the Runge-Kutta method as well as geometric displays based on the numerical data.  Alternatively, an excellent view of the behavior of the solutions can be obtained from the direction field associated with the differential equation.  (All of these techniques can easily be implemented on a graphing calculator).  From these numerical and graphical approaches, engineers can interpret and implement the solutions to solve the problems that gave rise to the differential equation in the first place.  


Notice that all of this can be accomplished without performing any integration!


Direction fields can also be used to graph implicit functions (including those that arise as solutions of exact differential equations).  Simply use implicit differentiation to obtain y' and graph the solution of the differential equation using standard numerical procedures.  In the process, we can also obtain the numerical values for this function.


Certainly, we do not advocate never solving any differential equations.  There is much to learn from the process of obtaining the solution.  More importantly, the closed form solutions are particularly useful in relating the behavior of the solution to the quantity being modeled.  But, more and more, modern courses in differential equations are de-emphasizing the old-fashioned cookbook methods in favor of either a more qualitative approach or a modeling approach.  In turn, there will be less need for students to have mastered the standard full repertoire of integration techniques.


So, what should be done about techniques of integration in calculus?  We believe that they should assume a less important role.  A certain amount of integration is certainly essential.  The amount that is considered essential is likely to diminish in the foreseeable future.  In place of some of the less important and more manipulative methods, we can introduce more substantial mathematical ideas.  For instance, an early introduction to differential equations provides a more than fair trade-off.  Students should come out of calculus with a firm notion of process and rate of change and exposure to differential equations is certainly an ideal way to emphasize this.  


In conclusion, we must accept the distinct possibility that, throughout their entire careers in science and engineering, our students may never have to differentiate or integrate a single function!  Between the graphical types of analysis described above and the awesome manipulative capabilities of computer algebra systems such as Derive, Mathematica and Maple (and their descendants), they will have much simpler ways to solve the problems that arise in their academic and professional careers.  Instead, they should be able to interpret the derivative and the integral intelligently.  What we must do is provide them with the conceptual and thinking skills that will allow them to ask the right questions, identify the mathematical aspects of the problems they face, convert those problems into an appropriate mathematical setting, and select the necessary mathematical tools to solve them.  This is very different from what we presently emphasize in our courses.  


The questions posed here are precisely the ones with which most of the calculus reform projects have had to grapple.  They are not easy questions because they go to the heart of what most of us have believed is the core of calculus.  Different projects have responded to these questions in a variety of ways.  In some, the response has been to incorporate a considerable amount of computer and/or sophisticated calculator work into the course.  In others, the response has been to focus more on student-related work whereby the students are expected to conduct individual or group projects that go far beyond our traditional course expectations of what constitutes using calculus.  In some of the projects, including the Harvard project [1], the response has been to rethink the entire calculus curriculum to produce a new calculus course which addresses these issues.  


In this project, we have tried to achieve a balance between graphical, numerical and symbolic approaches to all topics in calculus.  In the process, we have developed a calculus course which emphasizes mathematical thinking, not just manipulative activities to get the right answers to stock problems.  Where appropriate and essential, we have integrated a moderate amount of technology into the course where it serves the mathematical needs of calculus.  At the same time, we have intentionally tried to avoid becoming overwhelmed by the very technology that is driving the need for change in calculus.  Calculus should be, above all, a mathematics course and technology, if carried too far, can remove all mathematics from this course.

Conclusion:  Most scientists now believe that the dinosaurs became extinct after the earth was struck by a large meteor and the environment changed faster than the dinosaurs could evolve.  In an analogous fashion, mathematics has been struck by technology and our intellectual environment is also changing dramatically.  It would be a pity if calculus goes the way of the dinosaurs because we cannot adapt fast enough and evolve to meet the new challenges that technology presents.
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