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Calculus has often been described by both scientists and philosophers as "one of the greatest intellectual achievements of Western Civilization".  It is the cornerstone of the undergraduate mathematics curriculum with almost 750,000 students taking it each year [1985 CBMS report (Albers, et al, 1987)].  Of these students, somewhat over 100,000 are enrolled in two year col-leges.  In addition, several hundred thousand students take calculus in high school yearly.  It is the portal through which any student who wants a career in science and engineering must pass.  In addition, many business programs and most programs in the biological sciences and the social sciences require calculus.  It is also a requirement for admission to virtually every medical school as well as for many other professional programs.


On the other hand, calculus is probably the most unsuccessful course offered in higher education today.  The failure rate at most institutions is on the order of 30 - 50%, and is often considerably higher, particularly at two year colleges.  Rather than being the entry to scientific and technical careers, calculus has become a major roadblock.  Further, most mathematicians with whom we have spoken feel that few students who do come out of calculus have any feel for the beauty and grandeur of the subject and an appreciation for its power to solve dynamic problems in almost all areas of human endeavor.  Instead, the students have been mired in a series of mindless mechanical manipulations that many believe to be the substance and raison d'être of calculus.  Furthermore, most of us have found that the students come into calculus with increasingly weak mathematical backgrounds in terms of algebraic manipulation and geometric visualization.  (During the planning stages of the Harvard calculus reform project, we were surprised at the unanimity with which these perceptions of student deficiencies were reflected by all of us considering the variety of institutions involved.)  


At the same time, calculus textbooks have grown into 1200 page compendia.   In the interest of maximizing their potential adoptions, publishers include every topic that any reviewer or correspondent may suggest.  In turn, many instructors treat the textbook as a bible and feel compelled to cover every item in the book, which compounds the problem.


Over the last few years, leaders from the mathematical community, from academics in the client disciplines (physics, chemistry, biology, economics, computer science, engineering, and business), from leaders in industry and from the federal government have all called for significant changes in the focus of calculus.  The overriding point made by the non-academic sector is that in order for us to compete effectively in the international arena, the United States desparately needs many more technically trained and mathematically oriented people.  Despite this need, fewer students are completing their studies in technically oriented fields.  It is believed that one of the reasons for this is students' lack of success in calculus.  Thus, these leaders are emphasizing the need for calculus to become more of a pump, rather than a filter, in this training process.  See Steen (1986) and Douglas (1987) as well as the compelling arguments and data given in the National Research Council report, Everybody Counts (1989).  Finally, the history of the calculus reform movement is excellently described by Crocker (1990).


In addition, the rapid rate of technological growth in our society (manifested in the widespread availability of computers and highly sophisticated calculators) should have a major impact on the content of calculus.  In a recent nationwide study (involving both four and two year institutions) conducted by Lynn Steen (1986), past president of the Mathematical Association of America, about 90% of the typical questions on final exams in calculus can be solved using some of the widely available symbolic manipulation/computer algebra software systems.  Steen's conclusion is that there is something wrong if the focus of calculus is on problems that can better be done by machine.


To address these problems, the National Science Foundation has been funding projects to develop new curricula and teaching methods for calculus. In this paper, we will describe the philosophy and objectives of one of the largest of these calculus reform projects.  The Core Calculus Consortium project, under the leadership of Harvard University, was planned with the active involvement of two year college faculty, as well as high school teachers.  The consortium includes Suffolk Community College as well as Colgate University, Haverford College, Stanford University, the University of Arizona, the University of Southern Mississippi, and Chelmsford High School.


The Harvard Core Calculus Consortium Project

The Core Calculus Consortium project, under the leadership of Harvard, is designed to develop, test and disseminate materials for a new core calculus curriculum which we hope will revitalize the subject.  The underlying philosophy for the project is to take a fresh look at the subject without regard to existing syllabi or textbooks.  We believe that, in order to reinvigorate calculus, it is necessary to rethink the curriculum completely.  This meant taking a blank piece of paper and deciding which topics are so central that they must be included.  At the same time, many of the other topics which did not jump out at us in such a compelling manner were, after due discussion, omitted from the curriculum.


The project has five major thrusts:


1.  It will de-emphasize the current stress on manipulative skills by achieving a balance among visual interpretations of the concepts, numerical interpretations of the ideas, and the traditional manipulative approaches.  


2.  It will present a more intuitive approach to the concepts and methods of calculus to improve student understanding.


3.  It will introduce more modern mathematical ideas. 


4.  It will include a wider variety of more realistic applications to better reflect the modern uses of calculus in the client disciplines.  


5.  It will incorporate the use of appropriate technology (computers and sophisticated calculators) to improve student understanding of the ideas of calculus.


In the following, we will expand on the intent of each of these objectives and illustrate them with examples.

1.  The Rule of Three  The primary principle that came out of our preliminary discussions for this project is what we call the Rule of Three:  whenever possible, all concepts and methods in calculus should be presented in three ways - geometric, numerical and symbolical.  Our working group found that the greatest problem with calculus has been a massive over-emphasis on symbolic mani-pulations that totally obscures any understanding of, or appreciation for, the ideas of calculus.  Evaluation of limits becomes a mechanical process to produce an answer to a variety of particularly artificial questions.  Differentiation is a manipulative process to produce an answer, but not to answer a question of any substance.  Integration is a mechanical process to produce an answer which matches the expression at the end of the book.  


Certainly, students should and must be able to perform these operations.  They cannot apply the methods of calculus in subsequent courses otherwise.  On the other hand, they should also understand what they are doing and what the significance of their "answer" is.  For instance, whenever the answer to a limit prob-lem is obtained symbolically, students should be encouraged to verify the result numerically (using a calculator) so that they understand what the limit process really means.


Similarly, whenever they calculate the derivative of a func-tion, students should be taught to interpret the result geometrically and as a rate of change.  They should be encouraged to develop a far more visual perspective on calculus.  For instance, the chain rule can be motivated graphically by considering the function sin(2x) and constructing the graph of the derivative function.  This can be done using a computer program or by hand using the numerical and geometric interpretations of the derivative.  In this way, students quickly see that the result is a cosine function, but with roughly double the amplitude.  The discussion of where that extra "2" comes from provides a better intuitive understanding of the chain rule than the usual approach.  A balance between the two approaches definitely leads to a better understanding of the concept.


Further, the usual calculus course often seems to treat integration purely for the sake of integration.  In practice, integrals are performed for two reasons: to evaluate definite integrals that represent various 'physical' quantities and to solve differential equations.  Unfortunately, the students often are overwhelmed by such a powerful armory of integration techniques that they lose sight of the reason for finding the integrals in the first place.


A more appropriate balance involves a greater emphasis on the use of numerical integration methods (such as the trapezoidal rule and Simpson's rule) to obtain the value of a definite inte-gral to any desired level of accuracy whenever the integral is "difficult".  These methods should not be relegated just to cases where the integral is totally intractable.  In the real world, numerical procedures are the norm, not the exception.  Thus, regard, the examples used should not be selected simply because the integral works out nicely.  After all, who cares what the arc length is for f(x) = x3/2?  Far more interesting questions are: What is the arc length of an arch of the sine curve and what is the perimeter of an ellipse?


On the other hand, the purpose in teaching numerical methods should not be merely finding the answer.  Rather, the approximation methods should be employed in the sense of generating a sequence of successively more accurate approximations to reinforce the concept of an iterative algorithm.  Integration should not devolve into nothing more than button-pushing to obtain the answer using a canned computer routine or calculator INTegration key.  That teaches no more understanding than mindless manipulation.  


To implement such changes requires more than just text materials.  It requires developing a new set of problems which reinforce the new ideas and techniques.  In addition, since tests usually drive mathematics courses, one of the primary project activities is to develop test materials which reflect the new emphases.  For instance, rather than having students find the derivative of a function such as f(x) = √(x+3) at x = 1 using the definition of derivative, we might provide them with a table of numerical values for the function near x = 1 (say at x = 1, 1.05, 1.10, 1.15, 1.20, and 1.25) and ask them to estimate the value of f'(1) based on the data.  This certainly goes more to the heart of the concept of derivative than repeating the standard algebraic and limit manipulations without thinking about the meaning of the derivative.


From the point of view of two year college students, this change in emphasis should be particularly important.  Many of these students come in with extremely weak algebra and trigonometry backgrounds and they are quickly wiped out by the inordinate emphasis on manipulation in the traditional course.  Our proposed course should reduce this emphasis and so provide them with a better chance for success.  


At the same time, we realize that many students, despite the fact that their manipulative skills are weak, are very comfortable in a mathematical environment that stresses skills.  It doesn't seem to matter to them that virtually every problem they do comes out wrong.  We consequenty are aware that we must not overcompensate by removing too much manipulation and replacing it with too many conceptual approaches or we will lose these students in more ways than one.


Further, many of the students at two year colleges are typically extremely weak in geometric insight.  The increased emphasis on visualizing the mathematics should do much to overcome this weakness, especially if it is introduced early, thoroughly, and consistently throughout the course.

2.  A More Intuitive Approach:  We feel that the traditional calculus courses have focused too heavily on the mathematical underpinnings of the subject.  In doing so, we have often lost sight of the fact that the overwhelming majority of the students who take calculus come from the client disciplines.  They do not require a high level of mathematical abstraction such as the formal delta-epsilon definition of limit.  Rather, an undue or premature emphasis on rigor often acts as a barrier to understanding, particularly at the beginning of a course.  This problem is then compounded by an abrupt change of pace to emphasize purely mechanical manipulations and applications.  It is little wonder that so many students develop so little insight into what calculus is all about.


At most of the institutions represented in this project, the faculty had moved away from formal emphasis on rigor in the first year of calculus many years ago.  They felt that the majority of the students are much better served by balancing rigor with intuition and that the relatively small proportion of mathematics majors should be exposed to the more rigorous foundations in a subsequent course.  This outlook is fairly widespread at major colleges and universities, although few mathematicians publicly admit that they have de-emphasized rigor.  Paradoxically, it seems that some of the most rigorous calculus courses now offered are given at two year institutions.  Thus, we have the ironic situation where the weakest students in calculus are the ones who are being subjected to the most sophisticated courses.

3.  More Modern Mathematics.  We feel that the traditional calculus sequence has evolved slowly over time by a process of incrementing what was done in previous editions of textbooks.  As such, there have been very few dramatic changes in the basic mathematical ideas that have been included and these have rarely reflected the viewpoints of "modern" mathematics.


To illustrate this approach, we have attempted to very thoroughly delineate the difference between the notions of the global and the local interpretations of the behavior of a function.   Thus, we have carefully separated the ideas of the derivative at a point (whose value tells you about the function's local behavior) and the derivative as a function (whose value across an interval, for example, gives you global information).  Further, we have given major emphasis to the idea that the derivative at a point gives the best linear approximation to a function at that point.  In fact, we have utilized this theme heavily throughout the development of the differential calculus to make it clear to the student that it is an important tool of mathematics.  Moreover, this approach provides an ideal opportunity to emphasize the significance of approximation methods and to touch on the associated error analysis.


In a similar way, we have separated the notions of the definite integral and the antiderivative.  Since numerical methods have become increasingly more inportant, the antiderivative becomes much less important, particularly as computer software capable of performing symbolic manipulation becomes more widely available.  We have therefore made major cuts in the number of integration techniques covered and have increased the relative importance of numerical methods and the associated error analyses.

4.  Emphasis on Applications.  We believe that it is essential to emphasize the applicability of calculus.  Historically, the development of calculus was always "problem-driven";  it is only the standard course and the associated textbooks that are "technique-driven".  In fact, when one compares the types of applications contained in the so-called "baby" or applied calculus texts to those in the standard texts, it is apparent that the "mainstream" calculus books have not changed to reflect the broad utility of calculus in many different fields.  We intend to include many such applications into our course.  At the same time, we will "update" these applications by not feeling compelled to make them artificially simple by using only low-degree polynomials as is standard in applied calculus textbooks.  The availability of sophisticated calculators and computer software allow us to consider problems that do not necessarily have closed-form solutions.


Our efforts to stress applications is reflected in an increased emphasis on differential equations.  We intend to emphasize how one develops a differential equation to model a dynamic situation, whether it is in the physical sciences, the social sciences, or the life sciences.  For instance, we will treat a variety of models involving population growth, such as exponential growth, logistic or inhibited growth, and multispecies models (the Lotka-Volterra predator prey model) in greater detail than is usual at this level. 


The solution to any differential equation will be viewed from the perspective of the Rule of Three.  We will not be concerned solely with obtaining a closed form solution, but also with the qualitative behavior of the solution to explain the behavior of the quantity under investigation.  The geometric behavior of the solution can be investigated using the slope or direction field for the differential equation to trace the trajectories of the solution approximately.  We also construct numerical approximations to the solution to reinforce the need for numerical tools.


In a related direction, we are emphasizing the role of exponential and logarithmic functions at an extremely early point in the course.  We feel that they mirror a tremendous variety of natural processes and should be available as soon as possible.  On the other hand, we have found no compelling reasons to emphasize some of the more esoteric trigonometric functions such as the secant and cosecant.  Functions such as these typically arise almost exclusively as the result of what we feel are unnecessary and artificially complicated differentiation and antiderivative problems that bring little intrinsic value to the course. 


In addition, we are exploring the feasibility of introducing a variety of new applications of calculus into the course.  One such topic is that of cubic spline approximations which has become an important mathematical tool of engineering.  The basic idea is to determine a smooth curve which passes through a series of known points.  This is done by constructing a series of cubic arcs through several points at a time and by imposing the conditions that the arcs must connect and that the connections be smooth (that is, that the first or the first and the second derivatives agree).


Moreover, by emphasizing the applicability of calculus, we feel that students will become more interested in the subject and this heightened level of interest will lead them to persevere in the course.  This is particularly important with today's students, especially those in the two year colleges, who seem to require a far greater degree of relevance in their courses than their predecessors.  Few are interested in studying any subject, particularly in mathematics, for its own sake.  In order to achieve a more modern flavor for the applications of calculus, our project has also involved a variety of leaders from the different client disciplines to suggest new and appropriate applications of calculus.


Finally, we are considering many of the old standard problems to see if they really have intrinsic significance or are simply constructed to provide practice in a technique.  For instance, does anyone really apply any of the scenarios treated in related rate problems?  Is anyone actually concerned with maximizing the area of text on a printed page?  However, the identical mathematical problem is very relevant to meeting zoning regulations that require minimal open space in front, back and to the sides of a proposed building.  Considering the cost for land in many areas today, you definitely want the smallest plot that will satisfy the zoning laws.  Here is a situation that students can clearly appreciate.

5.  Use of technology.  Our fifth major theme involves the appropriate use of modern technology.  We do not focus on any particular piece of hardware (a computer system or a specific calculator) or any particular software package or product (such as a particular computer algebra system).  Instead, we attempted to incorporate the best mathematical ideas that technology has to offer to calculus in a generic sense.  To do this, we set a minimum floor for technology that we feel should be available to all students in calculus.  This includes access to computers with graphics capabilities and software that at the least provides graphs of functions, a root finding technique, numerical integration (hopefully implemented graphically) and graphical displays for the solutions first order differential equations and their associated tangent fields.  (These features are common to virtually every software package for calculus.)  


Further, we do not seek to use the computer or calculator as a black box which serves only to provide answers (either as numerical values, as in a definite integral, or as symbolic expressions, as in antiderivatives).  Rather, we see technology as being a tool which should be used to produce a deeper level of understanding of the mathematics itself.  In particular, it allows the student to approach mathematics in an exploratory vein.  As such, it plays the same role in mathematics as the microscope plays in biology -- it provides a window onto unseen universes that allows the user to discover and interpret the underlying concepts.  However, as with biology, technology should not be the focus of the subject, but simply an indispensible tool.


For example, one of the major focuses of calculus has always been in sketching and interpreting the graph of a function.  A computer graphics program or graphing calculator can provide a new dimension or perspective to this problem.  It should not be used as a replacement for thought.  In fact, it cannot work without a human mind to interpret the results.  For instance, consider a polynomial of degree four.  When viewed from a global perspective, all we see (and all that a computer program will display if a reasonably large interval is considered) is the shape shown in Figure 1.  Alternatively, if a reasonably small interval is selected for the same polynomial, then all we see is the local behavior in which the function appears to be linear.  It is only by intelligent exploration that appropriate "windows" can be found that display the important, or singular, characteristics of the polynomial.  In addition, if the curve has several "wiggles", no single view of it on a computer will normally provide a full picture.  Only an intelligent user can convert a variety of different computer or calculator views, each with a different scale, into a single sketch which reflects the interesting properties of the curve.  Thus, technology must not supplant theory, but rather the two must be balanced together to enhance understanding.  See Waits and Demana (1988).


Status of the Project

The project plan calls for the development of a set of innovative course materials (texts and all necessary ancillary materials), thorough classroom testing of these materials, and eventual national dissemination.  The working members of the project have already prepared the first drafts of the materials and are testing them in our own classes during the current (1990-91) academic year.  In the subsequent years (1991 and beyond), we expect that other individuals at the project institutions and colleagues at neighboring institutions will also become involved in using the materials.  It is only through such widespread testing and detailed feedback from varied institutions that will enable us produce a final set of materials that will serve the needs of the mathematics community in general.  In this regard, we eagerly welcome the active participation of interested readers in testing and using our materials.  If you would like to be kept informed of the status of the project or to volunteer as a test site, please contact Carl Brettschneider at the Harvard University mathematics department (Cambridge, MA, 02138). 


Moreover, we realize that we cannot simply produce a set of materials for such an innovative approach to calculus and expect all members of the mathematics community to be able to pick them up and use them.  For instance, we recognize that some of the mathematical ideas, such as the slope field, its interpretation and applications, may not be familiar to everyone.  Consequently, we plan to offer workshops to those who volunteer to become involved in the testing phase of the project to acquaint them with the philosophy behind the project and the materials themselves.  We also intend to offer such workshops as part of the major meetings of the various professional societies, including AMATYC.
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