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Students in introductory statistics courses are often asked to accept many statements and procedures on faith since the mathematical justification is usually far too sophisticated for them to comprehend.  In most traditional courses, the emphasis has all too often been on the mechanics of performing a hypothesis test or constructing a confidence interval (or worse, on calculating means and standard deviations, or even correlation coefficients by hand).  The students are typically given the summary statistics for a set of data (rarely the actual data values themselves) and asked to perform an inferential procedure.  At best, some preliminary theoretical discussion may be covered in class, but that is usually quickly forgotten in the rush to complete the mechanical solution to the problem.  When students do work with the actual data, even data they have personally collected, it is still just one possible sample to which they apply the appropriate (we hope) procedures.  It is therefore not surprising that many students come out of an introductory statistics course having mastered a series of computational procedures, but with relatively little statistical understanding.

 ADVANCE \u 9To gain an understanding of the underlying concepts, particularly the fundamental notion in inferential statistics of variability from one sample to another drawn the population, it is necessary to see many different samples and thus see the effects on the associated sampling distribution.  However, it is just too difficult and time-consuming to do this live in class.  And, in the few cases where it can be done, it is likely that the class becomes bogged down in the details of enumerating and analyzing all possible samples, so that the students do not see any overall pattern.  Fortunately, all of the core topics in probability and statistical inference can be dramatically presented using computer graphics simulations that let the students visualize the underlying statistical distributions and so enhance their understanding of the statistical concepts and methods.  

 ADVANCE \u 9Consider an experiment as simple as flipping a set of two or three coins.  Many students find it difficult to predict the type of results which will occur.  We can derive the associated probabilities theoretically, but many students are still not convinced about the results.  This is where computer graphics simulations can be extremely effective in justifying this conviction by performing the experiment repeatedly and displaying the results visually.  In Figure 1, we show the results of running such a simulation twice based on three coins; notice how each run produces different results.  Figure 2 shows the results of a simulation based on 10 coins;  notice how the shape begins to foreshadow a normal distribution and how unlikely it is to get all heads or all tails.  Using a series of such experiments, students can easily see the resulting patterns and so develop a feel for
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Figure 2
the accuracy of the results.  Simultaneously, it provides them with the conviction that the theory indeed agrees with reality.

 ADVANCE \u 9The ideas behind this experiment can easily be expanded to produce comparable graphical simulations of other phenomena studied in introductory statistics courses.  For instance, a natural extension is to perform a simulation of a general binomial experiment based on arbitrary n and p.  Similarly, it is possible to simulate experiments such as rolling a pair of dice, the law of large numbers, or the random (or drunkard's) walk.

Simulations of Sampling Distributions

Figure 4

Figure 3
[image: image4.wmf]Graphical simulations can be even more effective in examining a wide variety of topics from inferential statistics.  Perhaps the single most effective simulation that can be performed in introductory statistics is for the distribution of sample means.  In our implementation, the user can select any of a variety of underlying populations, sample size and number of samples.  The program randomly generates repeated samples of the given size, and then calculates and displays the mean of each sample.  [image: image5.wmf]
Figures 3 and 4 show typical results based on samples of sizes n = 4 and n = 25 drawn from a skewed population.  From such displays, it is quite clear that the center of the sampling distribution is close to the mean of the original population, that the spread in the sampling distribution is a fraction of the standard deviation of the original population, and that as the sample size increases, the sampling distribution becomes more and more normal.  From such explorations and the accompanying geometric display, the students in an introductory statistics course are able to predict the conclusions of the Central Limit Theorem and the properties of the sampling distribution of the mean based exclusively on the visual displays.  The only thing that they need to be told is that n = 31 has been found empirically as the minimum sample size needed to be assured of normality for most underlying populations.  Of course, how large n must be depends strongly on the shape of the underlying distribution.  Computer graphics present an ideal tool for experimenting with different values of n and different populations.  For instance, students can see that n = 1 is adequate if the population is normal; that n = 12 is usually accepted as large enough if the population is uniform; and that n = 100 may be needed if the population is highly skewed as with the exponential distribution.


Comparable investigations can be conducted using computer graphics programs to examine the properties of other sampling distributions which often arise in an introductory statistics course.  This includes the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions and the distribution of sample variances.  It is also possible to consider the sampling distributions associated with other statistics, including the sampling distribution of the median, the mode or the midrange.  A particularly effective use of such a program is to allow the students to conduct their own investigations of these (and related) sampling distributions on an individual or small group basis.  Having seen how such an analysis proceeds with the distribution of sample means, they can ask themselves the comparable questions about the sampling distribution:  what is its shape?  what is its mean?  and what is its standard deviation?  The students are then able to make some conjectures based on the visual and accompanying numerical displays.  In fact, individual students can be assigned different projects of this nature using a variety of underlying populations and a variety of sampling distributions such as those for the median, the mode, the midrange or even the variance.  This type of activity is extremely desirable for giving students a feel for discovering and developing a mathematical theory on their own.  More importantly, by repeating the procedure used to develop the key ideas for the distribution of sample means in a parallel context, the students achieve a far better understanding of what the first exploration accomplished.  Otherwise, the ideas presented on the Central Limit Theorem are not reinforced and hence do not make a sufficiently deep impression on all students.

Estimation and Hypothesis Testing
We next consider how  graphical simulations can be applied to estimate the unknown mean μ for a population.  A 95% confidence interval for the mean should have a 95% chance of containing μ or, equivalently, 95% of the confidence intervals so constructed should contain μ.  For most of the students in introductory statistics, this statement represents, at best, nothing more than an act of faith.  They do not fully appreciate the fact that the confidence interval constructed will correctly contain μ with probability .95.  There is no effective way to construct a large variety of different confidence intervals based on different sample data to verify that the theoretical considerations make sense.  Instead, students too often perform the appropriate manipulations to find the "correct answer" in a purely mechanical fashion.
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Figure 5
 ADVANCE \u 9In Figure 5, we show the results of a program that generates repeated random samples from an underlying population, constructs the corresponding confidence intervals and displays the results visually.  This graphical simulation provides an especially powerful tool to translate the statistical theory and predictions into ideas that the students can visualize and hence comprehend.

 ADVANCE \u 9The result shown in Figure 5 is based on repeated random samples of size n = 31 from a selected underlying population.  Each sample is used to construct a 90% confidence interval for the mean.  The program constructs and draws almost 100 successive confidence intervals on each run (until the screen is filled).  Notice that the location of the sample mean EQ \O(¯,x) about which each confidence interval is centered is also displayed.  The vertical line indicates the location of the population mean μ.  Further, whenever a particular confidence interval does not contain μ, the program displays the corresponding line in a different color for effect.  The numerical results corresponding to Figure 5 then show that 85 of the 96 confidence intervals, or 89%, contain μ.  Repeated runs of such a program can be used to demonstrate that, in the long run, the results will more or less average out to the predicted percentage of 90%.  In fact, a useful computer laboratory exercise is to have each student run the program simultaneously and then have them average the percentage of intervals which contain the true mean μ.

 ADVANCE \u 9Also, the lines drawn for the individual confidence intervals have different lengths.  This is because the length of each interval is based on the size of the sample standard deviation.  Thus, the program provides a visual dimension for seeing the effects of the standard deviation on the outcome of an estimation problem.  Similarly, if a different confidence level, say 98%, is used, then it is visually clear that most of the confidence intervals drawn are longer than those shown in Figure 5.  Moreover, very few of these confidence intervals do not contain μ.  Thus, students see that, by increasing the confidence level, we achieve a much greater likelihood of the confidence interval containing μ.  Perhaps most importantly, such a program can be used to give the students a greater appreciation for the nature of inferential statistics:  any statistical result is based on the data from one particular sample and the result will change if a different sample is used.
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Figure 6
 ADVANCE \u 9We next consider hypothesis testing for means.  Again, this is a procedure where the key ideas are, at best, usually accepted by most students on faith and the corresponding problems are handled mechanically rather than with statistical understanding.  For instance, if the significance level is .05, they often do not appreciate the fact that only 5% of all possible sample means will fall into the rejection region when Ho is true.  However, as with confidence intervals, these ideas can be demonstrated very effectively with an appropriate graphics simulation.  We illustrate the results of such a program in Figure 6 based on a significance level of α  = .05 and a one-tailed test.  The theoretical sampling distribution, which is approximately normal since the sample size used is n = 36, is drawn first.  The corresponding critical value for the statistic is drawn as the tall vertical line.  Finally, 100 random samples of size 36 are generated, the sample mean of each is calculated and drawn as a shorter vertical line.  In the particular run of this program displayed in Figure 6, only 5 of the 100 sample means fell in the rejection region.  

 ADVANCE \u 9When this program is used repeatedly, the students see that the proportion of sample means that fall inside the rejection region comes out, in the long run, to be very close to the value of α.  Further, they see that most of the "rejects" are relatively close to the critical value.  In addition, by examining closely the pattern in which the sample means fall and noticing where they are dense compared with where they are sparse, students can again see how the sample means are roughly normally distributed.  They also begin to appreciate the fact that they are really dealing with just one possible sample when they perform a typical hypothesis test and can better assess the significance of the results of that test.  In turn, this gives them a better understanding of what hypothesis testing is all about.

Linear Regression Analysis
Finally, we consider the notions of linear regression and correlation.  Again, students rarely appreciate the fact that the data they use to construct a regression equation or calculate the correlation coefficient is just one possible set of bivariate data.  Rather, they get so involved in performing the calculations, even with computational tools, that they lose sight of the underlying statistical ideas. [image: image8.wmf]
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Figure 8
 These procedures, though, also lend themselves to graphical simulations to enhance the concepts visually.  In Figure 7, we show the results from a program which draws repeated samples of size n = 3 from an underlying bivariate population, calculates the regression line for each sample and displays it graphically.  For comparison, the regression line for the population is also shown and the point corresponding to the two means, μx and μy , is highlighted by the circle.  The students quickly see that each sample gives rise to a different regression line, though most of them remain relatively close to the population regression line and most of them pass fairly close to the indicated point.  However, it is not unlikely to obtain several sample lines which lie at a sharp angle from the population line, and so regression analysis based on small samples is seen to be highly suspect.  On the other hand, when larger sample sizes are used, the resulting sample regression lines usually lie very close to the population line, as shown in Figure 8 for n = 10, and so support the notion that increased sample size makes for far better predictions.

 ADVANCE \u 9Furthermore, by examining the various sample regression lines, it is clear that they will eventually diverge from the population regression line and so the display provides an excellent argument for the dangers of extrapolating beyond the set of data values.  Further, it also provides a clear demonstration of the adjustment necessary in constructing prediction intervals for the value of y based on a given value of x using the regression equation.  The further x is from EQ \O(¯,x), the larger the adjustment must be.

Implementation
The authors use the programs described here primarily on an in-class demonstration basis to motivate and explain statistical ideas.  With the use of a LCD display panel, the PC graphical output is easily visible to all students in the class.  In addition, several of the programs are used as the basis for individual investigation projects;  students are required to conduct a study of the properties of a sampling distribution and write a formal report containing graphical output and their conclusions based on it.  Alternatively, some of the programs have tutorial routines that lead the students through the steps involved in mastering the corresponding statistical procedures, so that they simultaneously gain understanding of the ideas and facility with the techniques.

 ADVANCE \u 9The authors have also found that the visual images generated by the computer tend to "stick" in students' minds.  They often refer back to the computer pictures of a simulation.  Therefore it is possible to capitalize on these solid visual images by referring back to them on an on-going basis in class when discussing subsequent ideas or going over particular problems.
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