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ABSTRACT: The present paper describes the use of computer graphics simulations to en​hance student understanding of sampling dis​tributions that arise in introductory statistics. In particular, the following sampling distribu​tions are considered: the distribution of sam​ple proportions, the distribution of the differ​ence of sample means, the distribution of the difference of sample proportions and the dis​tribution of sample variances.
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The most exciting advantage of computer usage in mathematics education lies in its capability of enhancing student understanding of abstract con​cepts. This is especially true in courses in statistics and probability where computer graphics simula​tions of many random processes provide the un​derlying concepts with a visual dimension which brings them alive to the students. In a previous article, [1], the first author has detailed how such an approach can be used to lead the students in an introductory statistics course to discover the con​clusions of the Central Limit Theorem, which sum​marizes the properties of the distribution of sam​ple means. In the present paper, we will discuss ways in which graphics simulations can be used in a classroom demonstration mode to motivate and explain other situations involving sampling distri​butions that normally arise in introductory statis​tics.

The first case we will consider is the distribution of sample proportions which arises in both estima​tion and hypothesis test problems involving pro​portions. In particular, such cases involve study​ing a single random sample of size n drawn from an underlying binomial distribution having popu​lation proportion (. The corresponding sampling distribution for sample proportions has mean ( and standard deviation given by
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Figure 1. Simulated results of 300 random sam​ples of size 50 drawn from the distribution of sample proportions based on a population with proportion ( = .4.

When the sample size n is sufficiently large, usually taken such that both n( > 5 and n(l —() > 5, then the sampling distribution is approximately normal. Unfortunately, these facts are usually too sophis​ticated to derive in most introductory statistics courses and, consequently, they are usually pre​sented to the students as "facts" they must accept and use without justification and often without un​derstanding.

Using an appropriate graphics simulation, how​ever, it is possible to transform this process into an exploratory experience in which the students can see these facts develop. For example, suppose we consider repeated samples of size n = 50 drawn from a population whose proportion is ( = .4. In Figure 1, we show the results of drawing 300 such samples, where each horizontal line segment repre​sents the proportion of successes (out of the 50) in one such sample. From the display, it is apparent that this sampling distribution is approximately normal in shape and that its mean is centered ap​proximately 40% of the way across the screen. The accompanying numerical summary of the results of these 300 random samples shows an actual mean of .399, which certainly reinforces the theoretical pre​diction of π = .4, as well as the visual conclusion. Moreover, the formula for 
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compared to a standard deviation of .067 for the 300 sample proportions generated. Clearly, the stated formula accurately reflects the results of the simulation.

Furthermore, the occasional outlier that arises, such as the one at the right in Figure 1, provides an excellent opportunity to discuss the notion of randomness and to emphasize the concepts of prob​ability.

On the other hand, suppose we generate 200 sam​ples of size n = 8 from a distribution whose popu​lation proportion is ( = .75. In this case, n( = 6 and n(l — () = 2, which violates the conditions for normality. The results of the simulation are shown in Figure 2, from which it is clear that the sampling distribution is not quite normal. Incidentally, the display shows only relatively few vertical columns in this case. The reason is that each column cor​responds to one of the possible outcomes, which in turn correspond to the only possible proportions that arise in this simulation, 2/8, 3/8, 4/8, 5/8,..., 8/8. By way of comparison, in Figure 1, there were many more possible proportions that could arise from n = 50 trials and hence there were many more columns displayed.

Despite the fact that the distribution produced for Figure 2 is not particularly normal in shape, the mean proportion of successes in the 200 ran​dom samples comes out to .757 with a standard deviation of .154 compared to the theoretical pre​dictions of π = .75 and ( = .153. Again, these simulated results support the theory.

The next application of computer graphics simu​lations we will consider involves the distribution of the difference of sample means. In this situation, samples of size n1 and n2 are drawn from under​lying populations having means of µ1 and µ2 and standard deviations of (1 and (2, respectively. The corresponding sampling distribution for the differ​ence in the sample means, 
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provided that both n1 > 30 and n2 > 30.

In this case, the sampling distribution is approx​imately normally distributed. In the case where either sample size is small, it turns out that the standard error is given by
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and the sampling distribution is t with n1 + n2 - 2 degrees of freedom. The authors' simulation for this sampling distribution allows the user to select any two of a variety of underlying populations, in​cluding the possibility of using the same popula​tion twice. The user then selects the desired sam​ple sizes to be drawn from each population and the number of such sets of samples. The program determines the means 
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 for each sample, calculates and then plots the differences in these sample means, 
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.A typical result is shown in Figure 3 where the populations in questions are respectively normal and U-shaped with population means µ1 = 68.07 and µ2 = 68.61; the sample sizes are n1 = 30 and n2 = 30. From this display, we see that the difference of sample means does follow a normal distribution, approximately. Fur​ther, from the accompanying numerical summary, we find that the mean of the 300 sample sets gen​erated is -.55 compared to the theoretical value of µ1 - µ2 = —.54; the standard deviation for these 300 differences of sample means is 1.08 which is fairly close to the theoretical value of
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obtained from the above formula.

Figure 2. Simulated results of 200 random sam​ples of size 8 drawn from the distribution of sam​ple proportions based on a population with pro​portion 7T = .75.

In Figure 4, we show the results of performing this simulation using small sample sizes of n1 =4and n2 = 8. In this case, the corresponding sam​pling distribution is not quite normal in shape. De​spite this, the simulation results for the mean of the 300 sets of values for 
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 and the corresponding standard deviations, -.53 and 2.24, respectively, are still relatively close to the predicted values of-.54 for the mean and 2.63 for the standard deviation.

We note that greater accuracy would be achieved if the simulation were conducted with more than 300 sets of samples. In a sense, the larger number of samples is needed to counter the greater level of variation present when the sample sizes are small. On the other hand, such an increase in accuracy is always paid for by a commensurate increase in the time needed to complete the simulation. This trade-off can be capitalized on, as well, in a class​room setting to demonstrate the validity of the Law of Large Numbers.
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Figure 3. Simulated results of 300 random sam​ples of sizes 30 and 30 drawn from the distri​bution of differences of sample means based on Normal and U-shaped populations.

Figure 5. Simulated results of 400 random sam​ples of sizes 25 and 25 drawn from the distribu​tion of differences of sample means based on the same Uniform population.

Finally, in Figure 5, we show the results based on using the same underlying population twice, so that we are actually simulating the sampling dis​tribution with mean µ1 — µ2 = 0. The correspond​ing values for the mean and standard deviation of the difference of sample means are again extremely close to the theoretical predictions. The average difference in sample means is .07 which is close to 0, as predicted, and the standard deviation of the samples, 1.16, is very close to the predicted value of 1.18.
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Figure 4. Simulated results of 300 random sam​ples of sizes 4 and 8 drawn from the distribution of differences of sample means based on Normal and U-shaped populations.

Figure 6. Simulated results of 300 random sam​ples of sizes 50 and 30 drawn from the distribu​tion of differences of sample proportions based on populations with proportions 7Ti = .6 and

7T2 = .5.

In a totally comparable manner, it is possible to perform a graphics simulation for the distribu​tion of the difference of sample proportions. In this case, the user can construct two underlying bino​mial populations based on n1, (1 and n2, (2, re​spectively. For example, in Figure 6, we show the results of 300 simulations using n1 = 50, (1 = .6 and n2 = 30, (2 = .5. The vertical dashed line rep​resents the location of the theoretical (1 - (2  The distribution is quite normal in shape. The mean for these 300 differences of sample means is .10 with a standard deviation of .113. These values compare very closely to the predicted values of .10 and .115.

Our fourth application of computer graphics sim​ulations involves a simulation of the distribution of sample variances, s2. This arises in situations where we consider how the variation in any given sample compares to the variation in other possi​ble samples of the same size drawn from a given population. It is known that if we select repeated random samples from a normal population, then the distribution of (n — l)s2/(2 (which is a fixed multiple of the sample variance s2) follows a ξ2 dis​tribution with n — 1 degrees of freedom. Further, the mean of this distribution is given by

µV=(2
and its standard error is
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Clearly, the fact that this sampling distribution follows a ξ2 distribution means that these ideas cannot be treated until after ξ2 distributions have been introduced in a course. However, this is ac​tually quite beneficial since it provides a lovely op​portunity to return to the notion of sampling at a later stage in the course. As a rule, most treat​ments of ξ2 analysis tend to be purely mechanical and the use of this type of simulation can bring the underlying concepts to the fore.

Figure 7. Simulated results of 500 random sam​ples of sizes 5 drawn from the distribution of sample variances based on a Normal population.

In Figure 7, we show the results of a graphics simulation using 500 samples of size n = 5 drawn from a normal population. Each horizontal line segment represents the multiple of the variance s2 of one of the samples. From this, it is reasonably clear that the shape of the sampling distribution is[image: image18.jpg]:



 approximately ξ2. Moreover, the mean and stan​dard deviation for the 500 sample variances gener​ated are 7.63 and 4.97, respectively, compared to the theoretical predictions of 7.63 and 5.39 using the above formulas. The agreement is quite close in both.
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In Figure 8, we similarly show the results of the simulation based on 400 samples of size n = 20. The shape is that of a ξ2 distribution, with a rel​atively large number of degrees of freedom (which converges to a normal distribution) while the nu​merical results also agree quite closely with the pre​dicted ones for this case.
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Figure 9. Simulated results of 400 random sam​ples of sizes 10 drawn from the distribution of sample variances based on a U-shaped popula​tion.

While most of the commonly available texts only discuss the results on the distribution of sample variances when the underlying population is nor​mal, a simulation allows us to explore what hap​pens when the selected population is other than normal. For instance, suppose we choose a U-shaped population and draw 400 samples of size n = 10 from it. The results are shown in Figure 9. While the graphical display does not look much like a chi-square distribution, the numerical results for the mean are still very close to the theoretical pre​dictions. The mean of the 400 variances is 22.58 compared to a predicted value of 23.05 using the above formula.   However, the standard deviation for the 400 sample variances turns out to be 5.89 while the formula for (V produces a value of 10.87. Obviously, the formula does not apply to situations involving samples drawn from underlying popula​tions that are non-normal.

Clearly, in each of these cases (other than the last), the results from the simulations certainly sup​port the theoretical predictions and hence provide a deeper conviction to the student than they would normally get when the theory is given to them to accept on faith. At the same time, such simula​tions provide the students with the opportunity to visualize the corresponding sampling distribution and so give them a much deeper understanding of what is happening. In addition, it is possible to use such simulations to motivate some of the the​ory rather than to simply illustrate it. Thus, such simulations provide an outstanding means of trans​forming some of the rote learning in statistics into a context of exploration and discovery.
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Figure 8. Simulated results of 400 random sam�ples of sizes 20 drawn from the distribution of sample variances based on a Normal population.
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