 SEQ CHAPTER \h \r 1
Using Data Analysis to Motivate Derivative Formulas

One of the most powerful mathematical themes that permeates reform offerings at the college algebra and precalculus levels is the notion of fitting functions to sets of data.  These ideas open the door to allow instructors to introduce all manner of interesting applications that motivate the students by showing them how the mathematics they are learning has direct use in almost every conceivable area of human endeavor.  Simultaneously, these ideas provide a perfect opportunity to reinforce the fundamental behavioral properties of the various families of functions as well as the associated algebraic properties.  Unfortunately, these ideas have not yet been carried over into the study of calculus.


A modern approach to calculus involves a strong emphasis on student understanding by stressing fundamental concepts.  We want the students to distinguish clearly between the value of the derivative at a point and the derivative as a function.  We also expect the students to understand the two primary interpretations of the derivative at a point – as the slope of the tangent line and as the rate of change of the function.  We also expect students to know how to apply the definition of the derivative to estimate the value of f ’(a), for any given value of a.  We use this as the mathematical basis for the present discussion.


In this article, we will show how the notion of fitting functions to data can be applied to motivate the formulas for the derivatives of various basic functions.  To do this, we will use some of the features of the TI-86 calculator.  (Comparable features can be found on the TI-83 family of calculators; we will discuss the specific details below.)  In particular, one of the functions under the CALC menu is nDer, which estimates the numerical derivative of a function at a point.  For instance, nDer (x3, x, 5) estimates the derivative of y = x3 with respect to x at the point x = 5; the value obtained is 75.000001.  One can also use nDer (y1, x, 5) to estimate the numerical derivative of whatever function is stored as y1, say.  (Incidentally, the expression nDer (y1, x, x) can be used in the Y = menu to define the derivative function and so produce the graph of the derivative associated with the function in y1.


Suppose we start with the function y = x2.  Under the STAT menu, select EDIT and enter a set of values for the independent variable in the xStat list; for instance, we might use the values -3, -2, -1, 0, 1, 2, 3, 4 for x.  Then, for the yStat list, enter the command nDer(x2, x, xStat).  To do this, find nDer under the CALC menu, press EXIT, type in “ x2, x, ”, press NAMES and then select xStat.  The calculator then produces the list of associated estimates for the derivative of the function f(x) = x2 at the indicated points listed under xStat.  Press GRAPH, then ZOOM, MORE, and select ZDATA to create a viewing window that shows the “data” points. They clearly fall into a linear pattern, which suggests that the derivative of the quadratic function y = x2 is a linear function through the origin.  Moreover, from the STAT menu, select CALC and then select LinR for linear regression to find the equation of the line that best fits the data.  It turns out to be, exactly, y = 2x + 0, with a correlation coefficient r = 1.


A slight modification is necessary when working with the TI-83.  Define the desired function, say y = x2, as Y1 in the Y= menu and then set Y2 = nDeriv(Y1, X, X).  (Note that nDeriv is located as choice #8 on the MATH menu.)  Under the STAT menu, select EDIT and enter the desired values for x in the L1 list, say.  Then at the top of the L2 list, enter Y2(L1) to get the list of associated estimates for the derivative.  


In a comparable way, we could look at the function y = x3.  An inspection of its graph should suggest to the students that the slope is positive and becomes larger the farther x is away from the origin.  So the derivative function should have the general shape of a parabola (or any other function that is concave up with a turning point at or near the origin).  Replacing the contents of the yStat list with the comparable results for this function using the command nDer(x3, x, xStat) leads to the approximate values for the derivative: 

x
-3
-2
-1
0
1
2
3
4

f ’(x)
27
12
3.000001
1E-6
3.000001
12
27
48

The pattern for this “data” certainly suggests that the shape for the derivative function is similar to a parabola.  Finally, when we find the equation of the best-fitting quadratic, we get y’ = 3x2 + 0x + 1E-6, which is effectively  y’ = 3x2.  (Note that we cannot ask for the power regression function that fits this data because the xStat list contains negative and 0 values and the yStat list contains a 0 value.  However, we could change the values of x used, say to x = 1, 2, 3, 4, 5, 6 and so avoid this difficulty.)  


Clearly, we can continue this process with higher degree terms such as y = x3, y = x4 , and y = x5.  We could also extend it to power functions with non-integer powers, such as y = x½ , provided that we only select positive values for x and then ask for the associated power regression formula.  For instance, some estimates for the values of the derivative of y = x½ are

x
1
2
3
4
5
6
7

f ’(x)
0.5000001
0.3535534
0.2886751
0.25
0.2236068
0.2041241
0.1889822

The associated regression power function is y’ = 0.500000049x-0.50000006, with a correlation coefficient of r = -1.  (Note that slightly different values arise from the TI-83.)  Students quickly begin to see the power rule for derivatives of power functions emerging.  


What about other families of functions?  We can consider y = sin x on the interval [0, 2B] and select a number of values for x, say x = 0, 0.5, 1, 1.5, ..., 6, 2B.  The pattern in the resulting data strongly suggests a cosine function.  In particular, the slope of the tangent line to the sine curve at x = 0 is the first estimate,  f ’(0) . 0.9999998, which gives the correct amplitude for that cosine function.  


Alternatively, we could  use the sinusoidal regressions features of the calculator to find the sine function  that best fits the data.  It turns out to be 


y  =  0.99999983 sin (1.000000001 x + 1.570796325)  - 7.43097E-10 . sin (x + B/2).  

A simple application of the difference identity for the sine or a brief discussion of a horizontal shift shows that the derivative of the sine appears to be the cosine.  By this stage, one can “verify” the conjecture that the derivative of the sine is the cosine by superimposing the graph of the cosine curve over the data points for the derivative to see that it is seemingly a perfect fit to the naked eye.  







At this point, a formal proof makes sense – we have collected a set of data and made a conjecture based on it; we have verified that the conjecture appears to be true; and now we prove formally that the conjecture is indeed correct.  


Next let’s look at exponential functions.  Using the same approach as before with the function y = 2x, we get the approximate values for the derivatives plotted in Figure 1 based on x = -1, 0, 1, 2, 3, 4, 5, and 6.   This suggests that the derivative of y = 2x is also an exponential function.  Applying the exponential regression features of the calculator to the experimental data, we get y’ . 0.693147A2x, with a correlation coefficient of r = 1.  Similarly, with the function y = 3x and the same set of values for x, we get y’ . 1.098613A3x.  At this stage, different students can be assigned to perform a comparable analysis with a variety of values for the base, say b = 1, 1.5, 2.5, etc.  Incidentally, values of b less than 1 should not be used; the calculator returns a Domain Error message.  The reason for this is that in the process of fitting an exponential function to a set of (X, Y) data, the calculator actually performs a semi-log transformation to fit a line or function to the associated (X, log Y) data values.  If b < 1, the slopes of the tangent line are negative and the log of the resulting values are not defined.  The results of such an investigation can be compiled as shown in the following table:

b
y = bx
y’

1
1x
0 A1x

1.5
1.5x
0.405465 A1.5x

2
2x
0.693147A2x

2.5
2.5x
0.916291A2.5x

3
3x
1.098613 A3x

3.5
3.5x
1.252763 A3.5x

4
4x
1.386295 A4x

4.5
4.5x
1.504078 A4.5x

5
5x
1.609439 A5x






We can then examine the pattern in the successive multiples of bx as a function of the base b, as shown in Figure 2.  The points clearly fall into a pattern suggestive of a logarithmic function and, when we apply the calculator’s routine for logarithmic regression, we get


g(b) = -2.750121 H 10-7 + 1.000000623 ln b . ln b.

Thus, we obtain






 ADVANCE \u 13.


Alternatively, if students are not yet familiar with the natural logarithm and the use of e, we can modify the preceding development to introduce these ideas.  We can point out that the derivative of y = 2x is y’ . 0.693A2x, the derivative of y = 3x is y’ . 1.099 A3x and the derivative of  y = 4x is y’. 1.386 A4x.  This suggests that the derivative of y = bx, for any b > 0, is some multiple of bx and that the size of the multiple increases as b increases.  We then raise the question: Can we find a value of b for which the multiple is precisely equal to 1?  That base must be larger than 2, or even 2.5 if the investigation has included this value, and it must be somewhat smaller than 3.  A little experimentation of the type described above leads to a number around b = 2.72.  One can then obtain the value for e far more accurately by using the limit argument described by one of the present authors in [1].  


Once e is available, it is simple to suggest its use as the base of a logarithmic system.  Then, the students can be asked to find ln 2, ln 3, and ln 4, say, as examples.  They will quickly recognize the values obtained are identical to the coefficients in the formula for the derivatives of y = 2x , y = 3x , and y = 4x .


Finally, let’s consider the logarithmic function y = ln x, which is only defined for x > 0.  Examining the graph of y = ln x, it is clear that the derivative will be a decreasing, concave up function that is asymptotic to both the positive x axis and the positive y axis.  This should suggest a decaying power function of the form y = xp, with p < 0.   Using a set of values such as x = 1, 1.5, 2, 2.5,  3, 3.5,  4, 4.5, and 5, we can create a set of estimates for the derivative of y = ln x; the resulting values will clearly fall into the pattern of a decaying power function.  The data fitting routines for a power function then produce the approximation 


y’  =  1.000000255 A x-1.000000176  . x-1  

with correlation coefficient r = -1.  


Trying to discover the formula for the derivative of y = logb x using these data analysis ideas is not as trivial because the coefficient is 1/ln b and it would certainly not be intuitively obvious that one needs to look at the reciprocal of the coefficient obtained.

Discovering the Chain Rule

We can use some of the same methods and ideas to motivate the chain rule.  Consider the function y = sin 2x, whose graph is shown in Figure 3 from x = 0 to 2B.  Using the numerical derivative feature, we obtain and plot a set of points for the derivative corresponding to x = 0, 0.5, 1, ..., 2B.  These points clearly fall into the pattern of a cosine function, but one with an amplitude of  






about  2 and a frequency of 2.  See Figure 3.  Either by conjecture based on the graph or by fitting a sinusoidal function to the set of derivative estimates, we get y’ = 2 cos 2x. 


But, where does that 2 come from?  The function y = sin 2x, because of the 2x, completes two full cycles between 0 and 2B; it is therefore traveling “twice as fast” as the basic sine curve y = sin x.  But the derivative represents the rate of change in a function, so if y = sin 2x is traced out twice as fast as y = sin x, it is reasonable to conclude that its rate of change,  y’, is twice as large.  Then, having made the conjecture about a formula for the derivative of y = sin 2x, it is a simple matter to superimpose the supposed result to see that it seemingly fits the data points exactly.  


A comparable exploration with y = sin 3x is usually enough to lead most of the students to conjecture the general formula for the derivative of y = sin kA x, for any multiple k.  


Moreover, the same kind of exploration easily serves to motivate the derivative of the cosine function.  Similarly, one can conduct some comparable explorations with exponential functions of the form y = ekx  to develop the formula for its derivative.  


From a different perspective, most practical applications of the chain rule involve the derivative of a function involving only a constant multiple of the independent variable.  It is just on calculus exams that students encounter functions of the form y = sin (ex ADVANCE \u 44+5x ADVANCE \d 4).  So there is an advantage to the students to see formulas for derivatives of functions such as the ones discussed above before encountering the full-fledged chain rule.

Pedagogical Implications

In conclusion, the authors believe that an approach such as the one described has some significant pedagogical advantages.  For one, it definitely carries the theme of data analysis and curve fitting over into calculus.  Second, it provides an ongoing reinforcement of the behavioral characteristics of the different families of functions, something that is very advantageous for many of our students who can use the repeated reminders.  Third, it keeps the notion of the derivative as the slope of the tangent line to a curve in the forefront.  Fourth, it provides a much better intuitive and conceptual approach to the discovery of the derivative formulas than one that is primarily algebraic.  Of course, once the formulas have been discovered or conjectured, one can then turn to the algebraic limit arguments to prove the results formally.   


Finally, considering how productive the application of the data analysis ideas are in this one area of calculus, it might well be worth the interested reader’s time to find some other areas of calculus where these methods could also be applied fruitfully.

Reference

1.  Gordon, Sheldon P.  Visualizing the Chain Rule, The AMATYC Review, 1998.
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