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One of the beauties of mathematics is the frequency with which surprisingly simple patterns arise in the most unexpected places.  All too often, though, the complexity of obtaining "answers" to standard problems causes us to stop short of doing enough examples to see that there really is an underlying pattern.  This can be very unfortunate, especially in view of conveying the excitement of mathematical discovery to our students.


In the present article, we will indicate where several such unexpected patterns arise in calculus via the application of integration by parts to members of families of functions.   We note that the cases considered here are an outgrowth of some explorations suggested by Evans and Johnson (1).


Our first example involves antiderivatives of the form





⌠





│  xⁿ ex dx




(1)





⌡




Applying the integration by parts technique, we find that





⌠





│  x ex dx  =  (x - 1) ex




⌡





⌠





│  x2 ex dx  =  (x2 - 2x + 2) ex




⌡





⌠





│  x3 ex dx  =  (x3 - 3x2 + 6x - 6) ex




⌡




⌠




│  x4 ex dx  =  (x4 - 4x3 + 12x2 - 24x + 24) ex



⌡

and so forth.  (For simplicity, we have omitted the constant of integration in each case.)  After a quick examination, the pattern of coefficients in the polynomial should be quite clear and very striking.


In fact, once the pattern has been noticed, it is easy to see why it occurs.  Just consider the next stage using integration by parts with u = x5 and dv = ex dx.




⌠




  ⌠





│  x5 ex dx  =  x5 ex - 5  │ x4 ex dx




⌡




  ⌡





=  x5 ex - 5 [x4 - 4x3 + 12x2 - 24x + 24] ex


and we see that each term after the first will now be multiplied by the factor 5.  Furthermore, this argument lays the foundation for a relatively simple formal proof of the relationship using mathematical induction.


Alternatively, we can obtain the identical results with a particularly simple recursion relation.  Let





     ⌠




   In  = 
│  xⁿ ex dx
  for all n









⌡




so that I0 = ex.  The integration by parts formula then yields







     ⌠




   In  =   xn ex  -
│  xn-1 ex dx
 









⌡





  =  xn ex - n In-1
which can
be used to generate all the integrals iteratively in a purely algebraic manner.  Such an approach is useful to introduce to reinforce the value of recusive principles.




We leave it to the interested readers or their students to investigate if there are any related patterns in 




⌠




  ⌠





│  xⁿ e2x dx      or       │ xⁿ emx dx




⌡




  ⌡


Our second example involves integrals of the form





⌠







│  (ln x)ⁿ dx   



(2)





⌡




In particular, we again apply integration by parts to obtain





⌠







│  ln x dx   =   x(ln x - 1)





⌡








⌠







│  ln2 x dx  =   x(ln2x - 2 ln x + 2)





⌡





⌠






│  ln3 x dx  =  x(ln3x - 3 ln2x + 6 ln x - 6)




⌡




⌠





│ ln4 x dx  = x(ln4x - 4 ln3x + 12 ln2x - 24 ln x + 24)



⌡


By this stage, the pattern among the coefficients should be evident and can be verified by considering integration by parts 

again:




⌠



       ⌠





│  ln5 x dx  = x ln5 x - 5 │  ln4 x dx  .




⌡



       ⌡


Undoubtedly, many of you will have noticed the fact that the pattern of coefficients here is identical to that in our first example with the exponential function.  To see why, suppose we transform the integral (2) with the natural logarithms via the substitution w = ln x,  dw = dx/x, so that dx = ew dw.  Therefore,




⌠


 ⌠





│  lnⁿ x dx  =  │  wⁿ ew dw  .




⌡


 ⌡

which is equivalent to integral (1).


Our next example involves a pair of interrelated antiderivatives, 


  ⌠




    ⌠



  │  xⁿ sin x dx     and     │  xⁿ cos x dx  .


  ⌡


 

    ⌡


Again applying integration by parts, we obtain


  ⌠







  │  x sin x dx  =  sin x - x cos x


  ⌡


 



  ⌠







  │  x2 sin x dx  =  2x sin x - (x2 - 2) cos x


  ⌡


 



  ⌠







  │  x3 sin x dx  = (3x2 - 6) sin x - (x3 - 6x) cos x


  ⌡


 



  ⌠







  │ x4 sin x dx = (4x3 - 24x) sin x - (x4 - 12x2 + 24) cos x


  ⌡


 



  ⌠







  │ x5 sin x dx 


  ⌡


 




= (5x4 - 60x2 + 120) sin x - (x5 - 20x3+ 120x) cos x

and


  ⌠







  │  x cos x dx  =  x sin x + cos x


  ⌡


 



  ⌠







  │  x2 cos x dx  =  (x2 - 2) sin x + 2x cos x


  ⌡


 



  ⌠







  │  x3 cos x dx  = (x3 - 6x) sin x + (3x2 - 6) cos x


  ⌡


 



  ⌠







  │ x4 cos x dx = (x4 - 12x2 + 24) sin x + (4x3 - 24x) cos x


  ⌡


 



  ⌠







  │ x5 cos x dx 


  ⌡


 




= (x5 - 20x3+ 120x) sin x + (5x4 - 60x2 + 120) cos x

By this time, a variety of interrelationships among the two polynomial terms should be evident.  Most notably, both sets of integrals, those involving the sine and those involving the cosine, are expressed in terms of the identical pairs of polynomials for each value of n.  Furthermore, in each "formula", one polynomial term is precisely the derivative of the other for each n.  However, the pattern for the coefficients in the polynomials is probably not fully evident yet.  We therefore consider  


  ⌠







  │ x7 cos x dx 


  ⌡


 




= (x7 - 42x5 + 840x3 - 5040x) sin x 





+ (7x6 - 210x4 + 2520x2 - 5040) cos x

After a little experimentation with the coefficients in the first polynomial, we notice that

 x7 - 42x5 + 840x3 - 5040x  =  x7 - (7!/5!)x5 + (7!/3!)x3 - (7!)x

and so the pattern is apparent.  As we indicated in the first example, this can also be proven quite simply using mathematical induction.


It turns out that there are a great many other patterns that arise with this example.  Rather than derive them all, however, we will simply indicate some interesting directions that are well worth pursuing.  First of all, can you determine any patterns for


  ⌠







  │ xⁿ (cos x + sin x) dx   ?


  ⌡


 


for


  ⌠







  │ xⁿ (cos x - sin x) dx   ?


  ⌡


 


Second, suppose you write


  ⌠







  │ xⁿ cos x dx  =  Pn(x) sin x  +  Pn'(x) cos x


  ⌡


 


for any n.  What pattern can you find relating Pn"(x) to Pn(x)?   Based on this pattern, what second order differential equation does Pn(x) satisfy for each n?  What other differential equation does this suggest?  Can you solve the differential equation in closed form to determine the formula for Pn(x) for n = 1, 2, 3, ...?


Our last example involves a variation on the results of the first example.  If we replace ex with e-x in the formulas for 





⌠





│  xⁿ ex dx





⌡




then we obtain





⌠





│  x e-x dx  =  -(x + 1) e-x




⌡





⌠





│  x2 e-x dx  =  -(x2 + 2x + 2) e-x




⌡





⌠





│  x3 e-x dx  =  -(x3 + 3x2 + 6x + 6) e-x




⌡




⌠




│  x4 e-x dx  =  -(x4 + 4x3 + 12x2 + 24x + 24) e-x



⌡

and so forth.  Moreover, if we use the defining identities for the hyperbolic functions:


cosh x  =  ½(ex + e-x)    and    sinh x = ½(ex - e-x) 

then we can raise our final question: what patterns can you determine that arise in the antiderivative formulas


  ⌠




    ⌠



  │  xⁿ cosh x dx     and    │  xⁿ sinh x dx  ?


  ⌡


 

    ⌡

Pedagogical Considerations

The trend in the calculus reform movement is to reduce the amount of time and effort spent on mechanical manipulations.  As such, the above ideas might be perceived as part of the old approach.  However, students still need to develop some facility with doing mechanical manipulations by hand so that they learn what the underlying ideas are and what services the computer tools they use are providing.  If they are to do some such manipulations, then the author believes it is desirable to communicate some of the beauty of mathematics along the way.


Clearly, all of the above integrals can be done by hand and they represent a series of nice assignments for students to perform in the process of developing their skills in the integration by parts technique.  Hopefully, the students will simultaneously develop a better feel for the spirit of mathematics along the way.  This is certainly preferable to the scattershot approach found in the problem assignments in the standard textbooks where one typically finds 50 or 75 unrelated integrals.  Doing them is just drudgery;  finding underlying patterns as in the cases indicated here may convey a bit more.


However, such assignments only work if we know the patterns in advance, or at least suspect that there is some hidden pattern that can be uncovered.  Moreover, in the lengthy process of performing the repeated applications of integration by parts, it is very easy to lose sight of the results that one has obtained and thus never notice the underlying patterns and relationships.  Consequently, to promote an exploratory approach, the author strongly recommends the use of a computer algebra system (CAS) such as Derive or Mathematica to free the instructor or the student from the usual constraint of having to perform the operations by hand.  All it takes with Derive, for instance, is the command sequence:


A (for author) X^6 SIN X


C (for calculus) I (for integrate)  Enter (for expression #1)


Enter, Enter  (for no limits, so indicate an antiderivative)


E (for expand)


to have the computer respond with the corresponding antiderivative within seconds.  Thus, the value of using a CAS system is that it makes the open-ended exploration so simple that students would be willing to investigate larger series of cases (many potentially unrewarding) until they come up with something new and exciting.

  
As the old adage says, seek and ye shall find.
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