Finding Polynomial Patterns and Newton Interpolation
Introduction  Just as a linear function has a distinct numerical pattern based on the points it passes through (the successive difference quotients are all constant, or the successive differences are all constant if all the x-values are equally spaced), so also does a polynomial function have its own numerical pattern determined by a set of data.  But unlike the linear case, it is usually not as easy to find the polynomial that fits a given pattern.  The process of finding such a polynomial is called interpolation and one of the most important approaches used is the Newton interpolating formula.  In this article, we first show how the polynomial pattern can be identified and the degree determined by a set of points.  Furthermore, we show how the Newton interpolating polynomial can be introduced and developed at the precalculus level.  This brings one of the most powerful and useful tools of numerical analysis to the attention of lower division students while simultaneously building on and reinforcing some of the fundamental ideas in precalculus mathematics.     

Linear Patterns and Interpolation  Let’s consider the set of data presented in Table 1, where the x-values 
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 are equally spaced.  We examine the data by computing the differences between successive y-values 
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.  We extend Table 1 to include the differences 
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 in Table 2 and observe that the differences are all equal.  Since there is a constant difference between successive x-values, the lines joining any two consecutive points share the slope.  We therefore conclude that the data fall into a linear pattern.  Using the first two points from either table, we obtain the corresponding linear function as 
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Looking closely at the equation of the linear function 
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, we can see that the numbers 1, 7, and 3 exactly match the entries for 
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, respectively,  in the first row of Table 2.  This is not coincidental, as we discuss later.  This observation indicates that the parameters that define the linear function are closely associated with the information given in the first row of the table of differences.  In this example, the slope is equal to 
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.  A natural extension of this observation will allow us to construct the polynomial of higher degree based on a set of data values once its pattern is determined.  
Table 1 Determine the pattern 

	x
	y

	x0 = 3
	y0 =  1

	x1 = 4
	y1 =  8

	x2 = 5
	y2 = 15

	x3 = 6
	y3 = 22


Table 2 Difference table showing the linear pattern for Table 1
	x
	y
	Δ y

	x0 = 3
	y0 =  1
	y1 ( y0 = 7

	x1 = 4
	y1 =  8
	y2 ( y1 = 7

	x2 = 5
	y2 = 15
	y3 ( y2 = 7

	x3 = 6
	y3 = 22
	


Polynomial Patterns and Interpolation  How do we determine whether a set of data follows a quadratic pattern or, in general, a polynomial pattern?  We begin to answer this question by considering the set of points shown in Table 3 that lie on the parabola 
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, where equally spaced x-values are used.  Just as with Table 2, we include the differences between successive y-values.  Obviously, the 
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 values are not constant.  But they clearly follow a linear pattern because the differences between successive 
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 values, called the second differences of the y-values and written 
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, are all equal.  It is not a coincidence that a quadratic function has constant second differences of the y-values.  In fact, we can show algebraically that 
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 is a quadratic function.  (For that matter, if a set of data follows the pattern of a polynomial of degree n, then all the n th order differences will be constant.)

Table 3 Quadratic pattern

	x
	y
	Δ y
	Δ2 y

	3
	9
	7
	2

	4
	16
	9
	2

	5
	25
	11
	2

	6
	36
	13
	

	7
	49
	
	



In general, suppose that we have a set of 
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.  These points follow a quadratic pattern if the second differences of the y-values are all equal when the x-values are uniformly spaced [2].  Let’s apply this criterion to determine the pattern in the data in Table 4.  Table 5 extends Table 4 to include both the successive differences 
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 of the y-values.  We observe a fixed value for all the second differences and hence can conclude that the points in Table 4 follow a quadratic pattern.
Table 4 Determine the pattern

	x
	y

	1
	12

	2
	10

	3
	14

	4
	24

	5
	40


Table 5 Difference table of the quadratic pattern for Table 4
	x
	y
	Δ y
	Δ2 y

	1
	12
	– 2 
	6

	2
	10
	4
	6

	3
	14
	10
	6

	4
	24
	16
	

	5
	40
	
	



Often knowing the pattern of the data is just the beginning.  We would like to find the equation of the quadratic function that fits the quadratic pattern.  One way to proceed is to select three points, say 
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, from Table 4 and associate each of these points with an equation, that is, 
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.  These three equations are sufficient for solving for the three unknown coefficients 
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Using either the substitution or elimination method or technology to find the solution, we obtain that 
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.  We could also use the polynomial regression feature of a graphing calculator or Excel to find the polynomial directly, but this is limited to fourth degree polynomials with graphing calculators or sixth degree polynomials with Excel.  The graph of the function is shown in Figure 1 along with the data points.  
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The above approach sounds like a very good strategy; it is simple and straightforward.  But this method has its own limitation if we want to extend it to a set of data that follows a higher degree polynomial pattern.  When we try to fit a polynomial to a set of data that falls into a degree 
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 polynomial pattern, we would have to solve a system of 
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 unknowns.  We seek an alternative approach to find such an interpolating polynomial that doesn’t involve the heavy, but essentially mindless, computations.  The alternative we show below is a more clever way that enhances students’ mathematical thinking.  For the linear pattern case, we found that each entry in the first row of Table 2 was used in the equation of the linear function.  Is something similar also the case for the quadratic function?  What does the value of 
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To answer these questions, we need to examine the first row of Table 5 carefully.  Just like the linear case, it turns out that the first row is all we need to create the entire table, assuming that 
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, as well as the remaining points in the table?  One way to do it is by adding an appropriately chosen quadratic function 
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.  This likely seems an unusual approach because our problem is to find a quadratic function
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By the above analysis, we want a quadratic function 
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 in row one of Table 5?  If this is indeed the case, this approach greatly reduces the computational work to the point where it could be described as trivial.
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and so 
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If we have the three points 
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assuming that the x-values are uniformly spaced with 
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To have 
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This proof provides the specific insight needed to extend the process to model higher degree polynomial patterns.


The interpolating polynomial for the data in Table 4 is therefore
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when we multiply it out.  Figure 2 shows 
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As expected, the first row of Table 5 contains the sufficient information to give us all the coefficients 12, –2, and 3 of the quadratic function 
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interpolating polynomial through the three points 
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This expression is called the Newton forward interpolating formula of degree 2 for the interpolating polynomial [1].  

The ideas discussed here can be extended beyond interpolating a quadratic pattern.  For a set of 
[image: image140.wmf]1

n

+

 points where the x-values are uniformly spaced, when a higher degree polynomial pattern is identified by calculating 
[image: image141.wmf]m

th-order differences of 
[image: image142.wmf]y

 and finding them all constant at some level 
[image: image143.wmf]mn

£

, a polynomial of degree 
[image: image144.wmf]m
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 passes through not only all four points, but also any remaining given points in the data set.  

From this point of view, the process of constructing the interpolating polynomial using the Newton formula is a sequential method.  We initially consider the first two points and obtain the linear function that fits them.  Then we include the third point in the data set, find the appropriate quadratic component, and add it to the linear function so that the sum of these two functions fits the first three points.  In a way, the quadratic component acts as a correction term.  To move forward to find the interpolating polynomial of higher degree, we add the next point from the data to the first three points.  We then find the cubic polynomial component that is the new correction term and so obtain 
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Even though our discussion assumes that 
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However, we take a different approach to show the Newton formula where 
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Table 6 Change of 
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By applying (1) to the set of the corresponding points 
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The general cubic Newton interpolating polynomial, still denoted by 
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Suppose that we are only given every other points in Table 4 with an additional point 
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, shown in Table 7 along with the differences.  We will apply a general Newton interpolating formula similar to (2) to find the quadratic interpolating polynomial
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When we multiply it out, we obtain 
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Table 7 Difference table of the quadratic pattern where 
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Interpolation with Divided Differences  In the case where the points 
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 are not uniformly spaced, for example, the point 
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 is missing from Table 1, or the point 
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 is missing from Table 4,  then the above technique fails to identify the polynomial pattern.  We present a new set of data in Table 8, which is based on Table 1 with the point 
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 being removed.  To remove the effect of the unevenness of the 
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Table 8 Non-uniformly Spaced 
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Table 9 Divided difference table showing the linear pattern for Table 8

	x
	y
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The difference quotients are called the divided differences in numerical analysis.  Following the notation 
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, denoted by 
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).  The constant divided differences in Table 9 show that the pattern of the data in Table 8 is linear.  Again, using the information from the first row of Table 9, just as we did earlier, we obtain the linear interpolating function 
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Suppose we have another set of data, shown in Table 10, that is based on Table 4 minus the point 
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.  We follow the idea of using divided differences to determine the polynomial pattern.  When it comes to the second divided differences based on 
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When 
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 appear as the coefficients of the linear and quadratic components of the polynomial expression 
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 of (2), respectively.  This observation leads to the generalization of the Newton interpolating formula.  We have that the degree 
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Therefore, the constant second divided differences in Table 11 show that the pattern of the data in Table 10 is quadratic.  Using the information from the first row of Table 11, we obtain the quadratic interpolating function 
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Comparison with the Lagrange Interpolation Formula  The computationally convenient form of the Newton interpolating formula makes it one of two very widely used interpolation formulas, the other being the Lagrange interpolating formula [1].  The Newton interpolation process is very different from the Lagrange interpolating formula.  For example, the Lagrange
Table 10 Determine the pattern

	x
	y

	1
	12

	3
	14

	4
	24

	5
	40


Table 11 Divided difference table of the quadratic pattern for Table 10
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formula for interpolating the three points 
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Every term in the Lagrange formula uses the information of all the points.  Therefore, it constructs the interpolating polynomial by considering all points simultaneously.  

Although the two approaches actually produce the identical polynomial despite the totally different appearances of the two expressions, there are marked differences between how calculations with each are performed;  sometimes one approach is far preferable and sometimes the other is.  For example, Newton’s interpolation is better for the polynomial curve fitting for a given set of data.  In general, a set of 
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 points determines a polynomial of degree at most n.  Each polynomial term in the Lagrange interpolating formula is of degree 
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.  Due to a possible cancellation in the Lagrange formula, the interpolating polynomial may be lower in degree.  We will not know the exact degree of the interpolating polynomial until we simplify the Lagrange expression.  On the other hand, the Newton interpolation approach first constructs the divided difference table (or difference table if the x-values are uniformly spaced) that can be used to determine the exact degree of the polynomial.  Moreover, the first row of the divided difference table provides the coefficient of each term in the Newton interpolating formula.  When the data fall into a polynomial pattern with degree 
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, then the efforts in constructing the interpolating polynomial can be reduced with the Newton interpolation.


While Newton interpolation provides a foundation for the development of methods for the numerical solution of ordinary and partial differential equations, as well as for detecting errors in data, Lagrange interpolation has its own advantage of incorporating the original data into its formula.  Because of it, many numerical integration formulas such as the trapezoidal and Simpson’s rules use the Lagrange interpolating polynomials for the derivation of these formulas.  
Relationship to Taylor Polynomials  What seems less trivial is the connection between the Newton interpolating polynomial and Taylor polynomials if we only consider where we typically cover these two polynomials in mathematics courses.  But at a quick glance, the formula (2) for 
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is obviously very similar to the formula for the third degree Taylor polynomial for a smooth function 
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Let’s see just how close the two are.  Consider what happens to the Newton interpolating formula 
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, though they do retain the uniform spacing.  As all the points 
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, we see that the various factors 
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  and so their products approach the successive powers of 
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.  Thus, the Taylor polynomial expansion of a function is the limit of the Newton interpolating polynomials as 
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The resemblance of the Newton formula 
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 to the formula for the third degree Taylor polynomial 
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 may also be explained by the fact that the Taylor polynomial 
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 is determined by a sequential technique as well, where we consider the derivative of 
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 of order 
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 up to 3, one at a time.  That is why the remarkable similarity of these two formulas is not a coincidence.
Conclusion  The idea of the Newton interpolating formula is often hidden in the more standard derivation of the formula found in most numerical analysis textbooks.  Many students learn the Newton formula in an upper level math course where the formula is usually presented to them and then it is shown that it satisfies all the given points.  But the question that the students often ask (and more often don’t ask, even though it is something they don’t see) is where did the formula come from in the first place.  At least, precalculus is a place where the Newton formula can be investigated in the context of looking at the simple problem of finding polynomial patterns [2].  It is also a place to foster deep learning of mathematics by using a number of topics together during the investigation and so reinforce those ideas in students’ minds.  

Through our discussion, we touch upon many important concepts at the introductory level of mathematics, for instance, the connection between the real zeros of a polynomial and its linear factors, combining functions, graph transformations, and systems of linear equations.  It is a wonderful opportunity for students to see how seemingly unrelated mathematics topics are used collectively to solve a simple question such as fitting a quadratic function to three points. 

References
[1] K.E. Atkinson, An Introduction to Numerical Analysis, 2nd Ed., John Wiley & Sons, New York, NY, 1988.

[2] S.P. Gordon, F.S. Gordon, A.C. Tucker, and M.J. Siegel, Functioning in the Real World – A Precalculus Experience, 2nd Ed., Pearson, Boston, MA, 2004.

Figure 1: A parabola passes through


the set of points in Table 4








� EMBED Excel.Chart.8 \s ���





Figure 2: How the quadratic term � EMBED Equation.DSMT4  ��� affects the linear interpolation � EMBED Equation.DSMT4  ���


		� EMBED Equation.DSMT4  ���


		� EMBED Equation.DSMT4  ���


		� EMBED Equation.DSMT4  ���








� EMBED Excel.Chart.8 \s ���





(2, 10) 





(1, 12) 





(3, 14) 





Two vertical segments with equal length 6.





� EMBED Equation.DSMT4  ��� 








� EMBED Equation.DSMT4  ��� 





� EMBED Equation.DSMT4  ��� 




















PAGE  
6

[image: image290.wmf]2

()

fx

[image: image291.wmf]1

()

fx

[image: image292.wmf]1

()122(1)

fxx

=--

[image: image293.wmf]2

()3(1)(2)

fxxx

=--

[image: image294.wmf]12

()()()

fxfxfx

=+

[image: image295.wmf]-10

0

10

20

30

-1

0

1

2

3

4

5

[image: image296.wmf]()

fx

[image: image297.wmf]2

()

fx

[image: image298.wmf]1

()

fx

[image: image299.wmf]-10

0

10

20

30

-1

0

1

2

3

4

5

_1432583202.unknown

_1432626542.unknown

_1432638839.unknown

_1432650977.unknown

_1432663081.unknown

_1433424742.unknown

_1438285036.unknown

_1438546353.unknown

_1438546354.unknown

_1438285091.unknown

_1438284720.unknown

_1438284795.unknown

_1433429567.unknown

_1433429578.unknown

_1433424880.unknown

_1432663472.unknown

_1432922845.unknown

_1432922856.unknown

_1432921693.unknown

_1432663412.unknown

_1432663438.unknown

_1432663263.unknown

_1432663350.unknown

_1432657902.unknown

_1432657978.unknown

_1432659536.unknown

_1432661403.unknown

_1432661522.unknown

_1432657994.unknown

_1432657908.unknown

_1432651436.unknown

_1432657864.unknown

_1432651530.unknown

_1432651054.unknown

_1432651388.unknown

_1432651038.unknown

_1432646527.unknown

_1432648706.unknown

_1432649304.unknown

_1432650883.unknown

_1432650939.unknown

_1432649897.unknown

_1432650731.unknown

_1432650769.unknown

_1432650845.unknown

_1432650751.unknown

_1432650691.unknown

_1432649320.unknown

_1432649228.unknown

_1432648406.unknown

_1432648679.unknown

_1432647668.unknown

_1432647784.unknown

_1432639566.unknown

_1432644599.unknown

_1432644718.unknown

_1432641528.unknown

_1432639168.unknown

_1432639211.unknown

_1432639386.unknown

_1432639149.unknown

_1432629526.unknown

_1432629601.unknown

_1432629641.unknown

_1432630513.unknown

_1432630540.unknown

_1432630577.unknown

_1432629646.unknown

_1432629633.unknown

_1432629583.unknown

_1432629593.unknown

_1432629574.unknown

_1432629548.unknown

_1432626879.unknown

_1432628922.unknown

_1432628947.unknown

_1432626900.unknown

_1432628921.unknown

_1432626671.unknown

_1432626778.unknown

_1432626550.unknown

_1432584284.unknown

_1432584967.unknown

_1432586490.unknown

_1432626169.unknown

_1432626523.unknown

_1432625722.unknown

_1432586364.unknown

_1432586433.unknown

_1432585245.unknown

_1432586110.unknown

_1432585039.xls
Chart1

		-2				-2		-2

		1				1		1

		2				2		2

		3				3		3



54

18

36

12

12

0

10

10

0

14

8

6



Sheet1

		x		y		f1		f2

		-2		54		18		36

		1		12		12		0

		2		10		10		0

		3		14		8		6

		4		24		6		18

		5		40		4		36

		6		62		2		60

		0		0

		0		0

		0.25		0

		0.25		0

		0.25		0

		0.5		0

		0.5		0

		0.5		0.0000038147

		0.75		0.0000038147

		0.75		0

		0.75		0.0056377101

		0.875		0.0056377101

		0.875		0

		0.875		0.0903951135

		1		0.0903951135

		1		0

		0		0

		0		1

		0.25		1

		0.25		0

		0.25		1.2840254167

		0.5		1.2840254167

		0.5		0

		0.5		1.6487212707

		0.625		1.6487212707

		0.625		0

		0.625		1.8682459574

		0.75		1.8682459574

		0.75		0

		0.75		2.1170000166

		0.875		2.1170000166

		0.875		0

		0.875		2.398875294

		1		2.398875294

		1		0





Sheet1

		





Sheet2

		0		-4

		0		-2

		0.25		3

		0.25		6

		0.25		8

		0.5

		0.5

		0.5

		0.75

		0.75

		0.75

		0.875

		0.875

		0.875

		1

		1



0

-56.6666666667

0

-30

0

-10

0

-30

1

-56.6666666667

1

0

1

1

0

1

1

0

1

1

0



Sheet3

		0		-4

		0		-2

		0.25		3

		0.25		6

		0.25		8

		0.5

		0.5

		0.5

		0.625

		0.625

		0.625

		0.75

		0.75

		0.75

		0.875

		0.875

		0.875

		1

		1



0

-56.6666666667

1

-30

1

-10

0

-30

1.2840254167

-56.6666666667

1.2840254167

0

1.6487212707

1.6487212707

0

1.8682459574

1.8682459574

0

2.1170000166

2.1170000166

0

2.398875294

2.398875294

0



		





		






_1432584472.unknown

_1432584701.unknown

_1432584917.unknown

_1432584609.unknown

_1432584634.unknown

_1432584400.unknown

_1432584458.unknown

_1432584326.unknown

_1432583852.unknown

_1432583990.unknown

_1432584014.unknown

_1432584267.unknown

_1432584002.unknown

_1432583923.unknown

_1432583971.unknown

_1432583872.unknown

_1432583295.unknown

_1432583390.unknown

_1432583411.unknown

_1432583380.unknown

_1432583272.unknown

_1432583285.unknown

_1432583265.unknown

_1412860234.unknown

_1412925526.unknown

_1420116441.unknown

_1432583185.unknown

_1432583192.unknown

_1432577328.unknown

_1432583074.unknown

_1432583090.unknown

_1432583063.unknown

_1432581054.xls
Chart1

		-2

		1

		2

		3

		4

		5

		7



54

12

10

14

24

40

90



Sheet1

		x		y

		-2		54

		1		12

		2		10

		3		14

		4		24

		5		40

		7		90

		0		0

		0		0

		0.25		0

		0.25		0

		0.25		1

		0.5		1

		0.5		0

		0.5		1

		0.75		1

		0.75		0

		0.75		1

		0.875		1

		0.875		0

		0.875		1

		1		1

		1		0

		0		0

		0		1

		0.25		1

		0.25		0

		0.25		1.2840254167

		0.5		1.2840254167

		0.5		0

		0.5		1.6487212707

		0.625		1.6487212707

		0.625		0

		0.625		1.8682459574

		0.75		1.8682459574

		0.75		0

		0.75		2.1170000166

		0.875		2.1170000166

		0.875		0

		0.875		2.398875294

		1		2.398875294

		1		0





Sheet1

		





Sheet2

		0		-2

		0		1

		0.25		2

		0.25		3

		0.25		4

		0.5		5

		0.5		6

		0.5

		0.75

		0.75

		0.75

		0.875

		0.875

		0.875

		1

		1



0

47

0

5

0

3

0

7

1

17

1

33

0

55

1

1

0

1

1

0

1

1

0



Sheet3

		0		-4

		0		-2

		0.25		3

		0.25		6

		0.25		8

		0.5

		0.5

		0.5

		0.625

		0.625

		0.625

		0.75

		0.75

		0.75

		0.875

		0.875

		0.875

		1

		1



0

-56.6666666667

1

-30

1

-10

0

-30

1.2840254167

-56.6666666667

1.2840254167

0

1.6487212707

1.6487212707

0

1.8682459574

1.8682459574

0

2.1170000166

2.1170000166

0

2.398875294

2.398875294

0



		





		






_1420792311.unknown

_1420815576.unknown

_1431713553.unknown

_1431714839.unknown

_1432577325.unknown

_1431714131.unknown

_1420897701.unknown

_1431011899.unknown

_1431011914.unknown

_1431011542.unknown

_1420831415.unknown

_1420792685.unknown

_1420792918.unknown

_1420801550.unknown

_1420792705.unknown

_1420792672.unknown

_1420790526.unknown

_1420791765.unknown

_1420790879.unknown

_1420116491.unknown

_1420790511.unknown

_1412962987.unknown

_1414436632.unknown

_1414436950.unknown

_1414436971.unknown

_1414694532.unknown

_1420115171.unknown

_1414694458.unknown

_1414436965.unknown

_1413458422.unknown

_1412925785.unknown

_1412925823.unknown

_1412938704.unknown

_1412939309.unknown

_1412925854.unknown

_1412925805.unknown

_1412925562.unknown

_1412925764.unknown

_1412925555.unknown

_1412919761.unknown

_1412924450.unknown

_1412924477.unknown

_1412925445.unknown

_1412925491.unknown

_1412925369.unknown

_1412925021.unknown

_1412924469.unknown

_1412922705.unknown

_1412924424.unknown

_1412924432.unknown

_1412924171.unknown

_1412921131.unknown

_1412922647.unknown

_1412880445.unknown

_1412881566.unknown

_1412881772.unknown

_1412881959.unknown

_1412919701.unknown

_1412882896.unknown

_1412881811.unknown

_1412881760.unknown

_1412881458.unknown

_1412877307.unknown

_1412879973.unknown

_1412860249.unknown

_1412772711.unknown

_1412790150.unknown

_1412795028.unknown

_1412795064.unknown

_1412795092.unknown

_1412798925.unknown

_1412795081.unknown

_1412795042.unknown

_1412790164.unknown

_1412779352.unknown

_1412781844.unknown

_1412782514.unknown

_1412780289.unknown

_1412775971.unknown

_1412774077.unknown

_1412772437.unknown

_1412360302.unknown

_1412693090.unknown

_1412361655.unknown

_1412361674.unknown

_1412361628.unknown

_1412360276.unknown

_1412359444.unknown

_1412360254.unknown

_1412278267.unknown

