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One of the major thrusts of the Calculus reform movement is a greater emphasis on geometric and numerical ideas to bring about a balance with the traditional symbolic-manipulation approach.  Using this Rule of Three, we believe that students should come to achieve a greater intuitive understanding of the concepts and methods of calculus.  Details on the philosophy and goals of the Harvard calculus project appear in [2].  One change in the calculus curriculum we are considering is an early introduction of Taylor polynomial approximations as an immediate application of the derivative [3].  In the present article, we illustrate how these ideas on a more visual and conceptual approach to calculus can be implemented to develop Lagrange's formula for the remainder after n+1 terms in a Taylor polynomial approximation to a function f.


In the typical approach to this topic in most first courses in calculus, the formula is either simply stated or is derived by an application of Rolle's theorem to an incredibly artificial function which just happens to provide the desired result.  Usually, little in the way of motivation is presented to show where this function comes from and so it reduces to a proof by revelation.  An alternative derivation occasionally given involves a repeated application of the extended mean value theorem.  About the only motivation provided in most textbooks is the observation that the Taylor formula with Lagrange remainder reduces to the mean value theorem when n = 0.  In fact, Edwards and Penney [1] decry the lack of any effective motivation for the result.


A far more meaningful approach is to reverse this line of development to assess the error or remainder term after n+1 terms in the Taylor approximation,


Rn(x)  =  │f(x) - Pn(x)│

for any given value of x.  We assume throughout that the function f is sufficiently smooth; that is, f possesses n+1 continuous derivatives for any value of n cited.


We begin with the simplest level of approximation, that of a constant function P0(x) = f(a)  ≈  f(x) for all values of x close to x = a.  The error estimate is just the vertical distance from the curve to the horizontal line y = P0(x) = f(a) when x = b, as shown in Figure 1.


<  Figure 1 here  >

We estimate the difference 


│f(b) - P0(b)│  =  │f(b) - f(a)│

using the following geometric argument:  Connect the endpoints A(a, f(a)) and B(b, f(b)) with a secant line whose slope is 


m = [f(b) - f(a)]/(b - a).


<  Figure 2 here  >

Consider now the tangent line drawn to the curve at each point between x = a and x = b.  For the curve shown in Figure 2, the tangent line drawn at x =  a is flatter than the secant line and so its slope is less than m.  Similarly, the tangent line drawn at x = b is steeper than the secant line and so its slope is greater than m.  As a result, for any differentiable and hence continuous function, there will be at least one point c between a and b where the slope of the tangent line to the curve is precisely the same as m.  Thus,


f'(c)  =  m  =  [f(b) - f(a)]/(b - a),

so that the remainder term is just


f(b) - f(a)  =  f'(c) (b - a)

or equivalently

  
     f(b) = f(a) + f'(c) (b - a) .         

(1)

Of course, this is just a statement of the mean value theorem.


Even though we do not know where the point c is (except in the most simple cases), it is very worthwhile to point out that we can determine the maximum value of │f'(c)│ on the interval (a,b) and so obtain the maximum possible value of │f'(c)│ for the error in the approximation.  For instance, we might consider the function f(x) = cos x on the interval [0,π/10] with a Taylor polynomial approximation of degree 0 centered at x = 0.


An analogous argument can be constructed for higher degree approximations.  Consider a linear approximation to a function f on the interval [a,b], so that


f(x) ≈ P1(x)  =  f(a) + f'(a) (x - a)

and again consider the particular value x = b.  To estimate the size of the error,


R1(b)  =  │f(b) - f(a) - f'(a) (b - a)│,

we consider the graph shown in Figure 3 where we construct a parabola which passes through the points A(a,f(a)) and B(b,f(b)).  


<  Figure 3 here  >

We require that this parabola be tangent to the curve at x = a so that its slope when x = a is f'(a).  For convenience, we call this parabola the "secant parabola".  We take the equation of this parabola in the form


y = A(x - a)2 + B(x - a) + C

where A, B and C are three coefficients whose values must be determined.  Since the secant parabola and the original curve agree at x = a and x = b, we immediately have:


at x = a:  y(a) = C = f(a)


at x = b:  y(b) = A(b - a)2 + B(b - a) + C  =  f(b)

Further, since at the left endpoint, the slopes are the same, we also have


at x = a:  y'(x) = 2A(x - a) + B  =  f'(x)


or
         B  =  f'(a).

From these three equations, we obtain




C  =  f(a)




B  =  f'(a)




A  =  [f(b) - B(b - a) - C]/(b - a)2



   =  [f(b) - f'(a) (b - a) - f(a)]/(b - a)2



   =  [f(b) - f(a) - f'(a) (b - a)]/(b - a)2
Moreover, the concavity of the secant parabola at x = a is given in terms of the second derivative at x = a, y"(a), which is simply 2A.


Consider now any value of x between a and b.  At each point on the curve, we can construct an approximating parabola which is both tangent to the original curve and which has the same curvature as the original curve at each point.  We call such a parabola "doubly tangent".  Notice that as we have drawn the curve in Figure 4a, the curvature is smallest at the left endpoint and greatest at the right endpoint.  Therefore, the doubly tangent parabola PL(x) constructed at x = a is the flattest and so has less curvature than the secant parabola.  In particular, it is broader than the secant parabola.  Further, the doubly tangent parabola PR(x)  constructed at x = b is the tightest one and so has greater curvature than the secant parabola.  Consequently, it is narrower than the secant parabola.  


<  Figure 4 here  >


It is then clear that, among all the possible doubly tangent parabolas drawn to the curve, there must be at least one, drawn at some intermediate point x = c between a and b, which has the identical curvature as the secant parabola.  That is, at some point x = c, the second derivative f"(c) must agree with the second derivative of the secant parabola, 2A.  Therefore, we obtain


f"(c)  =  2A  =  2[f(b) - f(a) - f'(a) (b - a)]/(b - a)2
That is,



2[f(b) - f(a) - f'(a) (b - a)]  =  f"(c) (b - a)2
so that



f(b) - f(a) - f'(a) (b - a)  =  f"(c) (b - a)2/2

as the desired expression for the error estimate.  Equivalently,



f(b) = f(a) + f'(a) (b - a) + f"(c) (b - a)2/2       

(2)

where c is some value between a and b.


At this point, students can be asked to extend the above argument based on a triply tangent cubic of the form



y  =  A(x - a)3 + B(x - a)2 + C(x - a) + D

which agrees with a given function f at x = a and x = b and is such that the first and second derivatives agree at x = a.  The resulting error estimate based on a quadratic polynomial approximation is given by:


f(b) - f(a) - f'(a) (b - a) - f"(a) (b - a)2/2  



=  f"'(c) (b - a)3/3!

so that


f(b) = f(a) + f'(a) (b - a) + f"(a) (b - a)2/2  





+  f"'(c) (b - a)3/3!




(3)

where c is some number between a and b.  


When the students examine the formulas 1 - 3 for the Taylor polynomial approximations with error term, they immediately notice the desired patterns: the error term looks just like the next term in the Taylor polynomial approximation formula except that it is evaluated at some unknown intermediate point x = c rather than at x = a.  Once they have observed this, we can either indicate that this pattern persists for Taylor polynomial approximations of any degree, n, or can present a more formal proof, if desired.  Either way, the students will have a much better understanding of what the error analysis is all about than if we simply prove a theorem for them which conveys little or no insight.
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November 21, 1991

Professor Ann Watkins

Department of Mathematics

California State University

Northridge, CA  91330

Dear Ann:

It was good speaking with you the other day and I appreciate your suggestions on the periodicals aspect of the MAA book list for two year colleges.  I think that I subsequently convinced Lynn of the need for more higher rated titles.

In the meantime, I enclosing three copies of an article entitled A Geometric Approach to the Lagrange Remainder Formula for your consideration for possible publication in the CMJ.  It is based on some material I developed for the Harvard calculus project and indicates the intuitive and geometrical flavor that we are trying to develop.

Thank you for your kind consideration.  I look forward to hearing from you on this and discussing the session for Baltimore.  Take care in the meantime.  Regards to Will.











Sincerely yours,











Sheldon P. Gordon










Department of Mathematics










State University of New York










Farmingdale, NY  11735










September 24, 1997

Professor M. C. Harrison, Editor

International Journal of Mathematical Education



in Science and Technology

CAMET

University of Technology

Loughborough, Leicestershire LE11 3TU,  UK

Dear Dr. Harrison:

It was good hearing from you that my article,  A Geometric Approach to the Lagrange Remainder Formula, has been accepted for publication in the International Journal of Mathematical Education in Science and Technology.

As you requested, I have created some computer-rendered versions of the artwork and am including them for your use.  Also, I have taken the liberty to make some minor revisions in the article to reflect the question you raised about the numbering of the figures, as well as to reflect a new position I have assumed, and some typos that the printer introduced in the last version of the article.  If there is anything else I can do for you, please let me know.

Thank you again for the good news.  I look forward to hearing from you.








Sincerely yours,








Sheldon P. Gordon










Department of Mathematics










Suffolk Community College










Selden, NY  11784










July 8, 1996

Professor D. Walker, Editor

International Journal of Mathematical Education



in Science and Technology

CAMET

University of Technology

Loughborough, Leicestershire LE11 3TU,  UK

Dear Dr. Walker:

I am enclosing three copies of an article entitled A Geometric Approach to the Lagrange Remainder Formula for your consideration for possible publication in the International Journal of Mathematical Education in Science and Technology.

In addition, I have just been going through some back files and have a notation that a previous submission of mine, entitled l'Hopital's Rule and Taylor Polynomials, was accepted for publication in the Journal several years ago, but I have no memory of it actually appearing.  Is my memory slipping, my record-keeping slipping, or has something gone amiss?

Thank you for your kind consideration.  I look forward to hearing from you.








Sincerely yours,








Sheldon P. Gordon

