Interpolation and Polynomial Curve Fitting 
Introduction  Just as two points determine a line, three (non-collinear) points determine a unique quadratic function, four points that do not lie on a lower degree polynomial curve determine a cubic function and, in general, 
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 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree.  The process of finding such a polynomial is called interpolation and the two most important approaches used are Newton’s interpolating formula and Lagrange’s interpolating formula. Each has its own advantages and disadvantages, as we will discuss. In this article, we show how both approaches can be introduced and developed at the precalculus level in the context of fitting polynomials to data.  This brings some of the most powerful and useful tools of numerical analysis to the attention of students who are still at the introductory level while simultaneously building on and reinforcing many of the fundamental ideas in algebra and precalculus mathematics.     

Precalculus Mathematics   In algebra and precalculus, we emphasize the connection between the real zeros of a polynomial and its linear factors.  For example, if
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 has two real zeros, 
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, each corresponding to the linear factor 
[image: image6.wmf]2

x

-

 and 
[image: image7.wmf]3

x

-

, respectively.  Also, we connect a real zero with an x-intercept.  Conversely, if a parabola is given with two known x-intercepts 
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, where k is a constant that can be determined based on additional information about the parabola.  


For example, suppose that a parabola has x-intercepts at 
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, as shown in Figure 1.  Then we know 
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To see how the information about the parabola is used in the formula of the quadratic function, we express the function as 
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But the general case is where we have three points such as 
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 at different heights on a parabola.  The equation of the parabola is 
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.  The three points then produce a system of three linear equations in three unknowns:
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Using either the substitution or elimination method, we find that 
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; and so the quadratic function is 
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.  Its graph is shown in Figure 2 along with the interpolating points.
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The above approach is simple and straightforward, but it has limitations if we want to extend it to more than three interpolating points. To fit a polynomial to 
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 points, we would have to solve a system of 
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 linear equations in 
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 unknowns.  Is there another way we can find such an interpolating polynomial without involving heavy computations?  Let’s re-visit the case where we found the quadratic polynomial, given the two x-intercepts 
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 on the parabola.  If we repeat the derivation used previously with these parameters instead of the specific coordinates, we obtain the quadratic function 
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It may be obvious, but it is important to note that 
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.  This observation holds the key to new ways of determining the quadratic function that passes through all three given points.  It also provides the specific insight needed to extend the process to more than three points.  

Newton’s Interpolation and Precalculus Mathematics  We know that any two points 
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where 
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 is called the first difference.  Just as two points determine a line, three points determine a quadratic function, provided that the points do not lie on a line.  The quadratic polynomial that passes through the three points 
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where 
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Equation (2) is known as the quadratic Newton (forward) interpolating polynomial.  For instance, if we have the three points 
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, so the resulting quadratic is 
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.  The graph of this polynomial along with the three interpolating points is shown in Figure 3.
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To see where Newton’s formula (2) comes from, consider again the three points 
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To retain the perfect fit of the linear function 
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 to the first two points, we will modify 
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Consequently, the new function 
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 passes through all three points.  At the same time, we know that 
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We write 
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.  Again, with the interpolating points 
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Similarly, the four points, 
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       and so on.  In general, a set of 
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 (unless the points fall on a curve of lower degree) and the equation of that polynomial can be found by Newton’s formula.  If the points are uniformly spaced with spacing 
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One of the principal characteristics of any linear function is that the successive differences of the y-values are always constant, provided that the x-values are uniformly spaced.  There are some simple generalizations of this criterion.  In particular, if all the successive second differences 
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 (k = 0, 1, 2, …) of the y-values are constant, then the points fall into a quadratic pattern;  if all the successive third differences 
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 (k = 0, 1, 2, …) of the y-values are constant, then the points fall into a cubic pattern; and so forth.  If we are given a set of 
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 points with uniformly spaced x-values, but do not know the precise polynomial pattern that the points fall into, we can easily determine that pattern by constructing a table of differences and looking for the higher degree difference 
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Consider the eight points 
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 in Table 1, where there is a constant difference between all the x-values.  We have extended the table to include columns for the first, second, third, and fourth differences.  Notice that all of the entries under 
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 are equal to 12;  this tells us that the points fall on a cubic polynomial.  (All subsequent higher order differences will then be 0.)  Moreover, the coefficients in Newton’s third degree interpolation formula (2) are 
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    Table 1:  Difference table for a set of points

We show the graph of this cubic, along with the interpolating points, in Figure 5.
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We show a different perspective on what is happening here in Figure 6 where we show not only the interpolating polynomial, but also the linear function based on the first two terms and the quadratic function based on the first three points.  Thus, the line through the first two points is just the linear Newton polynomial 
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  and the cubic is the full interpolating polynomial.  Thus, each additional term in the interpolating polynomial can be thought of as an adjustment to the preceding polynomial that “picks up” one more point. 

In addition, the authors have created an interactive Excel spreadsheet (NCTM website address here) that allows readers and their students to investigate the ideas relating data values, tables of differences, and Newton’s interpolating polynomials.  The spreadsheet allows the user to select the number of data points n (up to 12), constructs the table of differences, draws the graph of the interpolating polynomial, and displays the equation of the polynomial.  It makes it evident 
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that, when the values of some higher order difference are constant, all the data points fall onto a polynomial of lower degree than 
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[image: image139.wmf]1

n

-

.

Lagrange Interpolation and Precalculus Mathematics  The major drawback to Newton’s  interpolation formula is the fact that it requires uniform spacing for the x-values in a set of data.  An alternative approach is Lagrange’s interpolation formula, which does not require uniform spacing. But, it carries with it a cost – it is a more complicated formula that usually involves considerably more computational effort.


Suppose that we have three points 
[image: image140.wmf]00

(,)

xy

, 
[image: image141.wmf]11

(,)

xy

,  and 
[image: image142.wmf]22

(,)

xy

, where all of the 
[image: image143.wmf]i

x

 are different.  The observation in the previous paragraph suggests that we may break up the quadratic function 
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Look at the above display vertically.  We pair each of the three numbers 
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, by formula (1).  Similarly, the function 
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The sum of 
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The equation of the parabola that passes through the three points 
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Figure 7 shows 
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This formula
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is an example of the quadratic Lagrange interpolating formula and is named after Joseph Louis Lagrange, a famous Italian-born French mathematician of the 18th century [1].  More generally, the quadratic Lagrange interpolating polynomial that passes through the points 
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The ideas discussed here can be extended if there are more than three given points.  For instance, the four points 
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 are distinct and the points do not lie on a line or a parabola). A simple extension of the Lagrange interpolation formula used above gives a simple way to construct this cubic.  The third degree Lagrange interpolating polynomial, 
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, each constructed in the comparable way.  The result is
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Notice that, at each of the four interpolating points, only one of the four cubic components is not automatically zero and so contributes precisely the associated value of y at each of those points.  The other three cubic components must contribute zero at these points.  For instance, at 
[image: image212.wmf]0
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, only the first component is non-zero and it contributes 
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 to the sum.  That is, 
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.

The authors also provide (URL here) an interactive spreadsheet to investigate graphically and numerically the way in which the linear, quadratic, and cubic Lagrange polynomials are constructed out of their component functions for user-defined sets of data.

Interpolation and Regression  Often in practice we have large sets of data.  If we have 
[image: image215.wmf]1
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 points (where 
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 is large), the interpolating polynomial is of degree 
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, presuming that the points do not fall onto a polynomial of lower degree.  This high degree polynomial certainly passes through all of the interpolating points, but it can be a very poor match between those points.  This can happen because the interpolating polynomial may change direction up to 
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 times.  In the process, the polynomial may shoot way up or down after passing through each interpolating point in order to reach the next turning point to come back down/up to hit the next interpolating point.  We illustrate such a case in Figure 8 where the interpolating points are 
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, 
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, 
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, 
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, 
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 and 
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.  Such an oscillatory behavior may dramatically affect the accuracy of approximation between interpolating points and make the approximation very sensitive to any changes of the interpolating points.  


If the exact fit is not the only concern, we may circumvent these difficulties by finding a lower degree polynomial that will give reasonable accuracy.  The most common approach is to use polynomial regression, which only attempts to capture the overall trend in a set of data.  As such, it can potentially give much better approximations between the interpolating points, even though the regression polynomial doesn’t necessarily pass through any of them.  
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Pedagogical Considerations Polynomials have been extremely important in the applications of mathematics for centuries.  One of the most widespread uses is in approximation and this role has only increased dramatically in our technological age (unlike the ability to factor all manner of arcane expressions).  As such, we believe it is important for some of these ideas to be brought to the attention of students to demonstrate such a pervasive and long-lasting application of mathematics.  

At the same time, the approaches used here provide the opportunity to reinforce some major ideas and methods in algebra and precalculus mathematics.  Through our discussion, we touch upon many important concepts at the introductory level of mathematics, for instance, the connection between the real zeros of a polynomial and both its linear factors and the x-intercepts of the graph of the polynomial, combining functions (more than just the mechanics), and systems of linear equations.  It is a wonderful opportunity for students to see how seemingly unrelated mathematics topics are used collectively to solve a simple question such as fitting a quadratic function to three points.  Perhaps equally important, this introduces students to one of the most widely used applications of polynomials, in contrast to the usual spectrum of algebraic techniques for manipulating, and especially factoring, all manner of arcane expressions that almost never arise outside of algebra classes.  

Conclusions
The simplicity of both the Newton and Lagrange interpolating formulas makes them widely used results in all areas where there are underlying calculations based on data.  Within mathematics, the formulas provide a foundation for the development of methods in numerical integration and differentiation, approximation theory, and the numerical solution of differential equations.  Consequently, they become very important results in the interpolation theory of numerical analysis.  However, these ideas can also be valuable additions to a modern course in algebra or precalculus. 


Moreover, curve fitting has become an important topic in modern algebra and precalculus classes, though it is usually approached almost exclusively from the perspective of regression.  And, polynomial regression is usually limited by the available technology – graphing calculators up to fourth degree and Excel up to sixth degree. 
At least, precalculus is a place where the Newton and Lagrange formulas can be investigated by setting a sequence of what-if questions when we discuss polynomial curve fitting.  It is also a place to foster deep learning of mathematics by using a number of topics together during the investigation.   

References
[1] K.E. Atkinson, An Introduction to Numerical Analysis, 2nd Ed., John Wiley & Sons, New York, NY, 1989.
(6, 4) 





(1, 2) 





(3, 8) 





� EMBED Equation.DSMT4  ��� 





� EMBED Equation.DSMT4  ��� 





Figure 8:  Oscillatory behavior of interpolating polynomial
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Figure 2: The parabola through the three points (1, 2), (3, 8) and (6, 4)
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Figure 1: A parabola passes through two x-intercepts


at � EMBED Equation.DSMT4  ���, � EMBED Equation.DSMT4  ���and a point (3, 20)








Figure 7: The three component quadratic functions of � EMBED Equation.DSMT4  ���
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Figure 4: How the quadratic term � EMBED Equation.DSMT4  ���affects the linear interpolation � EMBED Equation.DSMT4  ���
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Figure 5: A cubic interpolating polynomial for 


the points in Table 1








Figure 6: Graphs of � EMBED Equation.DSMT4  ���, � EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ���
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Figure 3: The parabola through the three points (1, 12), (2, 10) and (3, 14)
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