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Is It Really Such A Tight Squeeze?

Sheldon P. Gordon


While statistics has a very different philosophy from mathematics, as David Moore points out, that doesn't necessarily mean that statistics courses can, or should, be left exclusively as the province of statisticians.  The faculty in engineering departments who offer statistics courses may have no more formal training in statistics than math faculty do;  what is important is that whoever teaches such courses (statisticians, mathematicians, engineers, psychologists, ...) have some experience with using statistical ideas and methods to study real data and have the ability and enthusiasm to communicate this to their students.  An instructor with a background in theoretical mathematics or theoretical physics or engineering is not necessarily incapable of teaching such a course effectively;  the danger is that he or she will present the statistics from the point of view of theoretical mathematics, physics or engineering.  In large measure, then, this becomes a matter of training and re-education.  The MAA, through its committee on statistical education, has received large-scale funding from the NSF to conduct a series of summer workshops to train mathematics faculty to teach statistics from a modern, applied point of view.  The Statistical Thinking and Teaching Statistics Project is headed by George Cobb of Mount Holyoke College and Mary Parker of Austin Community College.


The question we face here is not one of a turf battle between mathematicians and statisticians.  Rather: 


At a minimal level, how do we expose students in math intensive fields to some fundamental statistical and probabilistic ideas in the time frame that typical students have available during their first two years of undergraduate study?


At a maximal level, how do we fit all of the statistics and probability needed by these students into those first two years?


The problem has become exacerbated with the recent ABET (Accreditation Board for Engineering and Technology) decision to require a course in probability and statistics for all engineering students.  Many schools have now been forced to come to grips with how to accommodate this in an otherwise overfilled curriculum.  Some schools have already done so with seemingly little difficulty -- the engineering department offers its own engineering statistics course.  Thus, the seven into four problem actually becomes a six into four problem.


Mathematics departments must also come to grips with this problem.  Otherwise, by a simple exercise in induction (let computer science departments teach discrete mathematics, let engineering or physics departments offer differential equations, ....), the entire problem can disappear.  Mathematics departments will be left teaching only remedial algebra courses.  However, this is not an acceptable solution for any of us.


If we are to resolve this problem, we have to consider three separate components:  



▸  Paring significant amounts of material from existing courses;  



▸  Integrating material from different courses in new ways;



▸  Preparing students differently for these courses.

Lessons from the Calculus Reform Movement

According to a recent study conducted by the MAA, about 56% of all colleges report some level of implementation of calculus reform.  About 600 institutions are currently using materials from the major calculus reform projects; many others have developed their own materials.  Many of the instructors implementing these reform courses report that they cannot conceive of going back to teach traditional calculus courses.  In turn, these efforts have spawned a variety of related projects to reform other courses in the mathematics curriculum, most notably in multivariable calculus and differential equations to reflect the different calculus experience students are receiving and in precalculus to reflect the different type of preparation that students now need for calculus.  Thus, the calculus reform movement has progressed from an innovative experiment to a major change in the curriculum.


This is quite a remarkable achievement, considering that the central mathematics curriculum has been virtually unchanged throughout most of our professional careers.  True, Kemeny, Snell and Thompson introduced finite mathematics about 40 years ago, but those courses are still offered primarily to business majors;  discrete mathematics has never become quite as important as many of its proponents claimed 10 years ago;  statistics has become one of the most important applied offerings in many mathematics departments, but has had relatively little impact on the central mathematics curriculum.


The success of the calculus reform movement, however, proves that dramatic change is possible in the mathematics curriculum.  More importantly, it demonstrates that the change can, and must, be accompanied by a paring away of topics that once were considered essential to that curriculum.  Students can function in calculus and other courses without secants and cosecants; traditional related rate problems can be removed entirely and no one apparently misses them;  technology can provide effective (in fact, preferable) alternatives to the full array of techniques of integration provided students learn to understand what they are doing and develop the ability to select the appropriate tool;  mathematicians can survive without proving the mean value theorem after one month of Calculus I. 


The key lesson from this is that material can be removed from the curriculum, and it is this message that is essential if one is to have any hope of resolving the seven-into-four problem.  And that resolution is going to be far more painful than anything that we have gone through yet, because far more will have to be removed.


There is another significant aspect of the calculus reform movement that has importance here.  Rather than viewing calculus as developing the skills needed for subsequent differential equations courses, most of the major projects have moved the study of differential equations into a far more important and central position within calculus itself.  By incorporating substantial parts of the subject, particularly from both modeling and qualitative points of view, these projects have completely undermined traditional cookbook-style differential equations courses.  It is no wonder that people who have offered such calculus courses are now intent on developing alternatives to the standard differential equations courses so that they can build on the new perspectives and approaches introduced in calculus.


Finally, the calculus reform movement has lead to a fragmentation of the one-time monolithic structure of freshman calculus.  New courses have been developed for different institutional settings and different student audiences.  With the universal availability of desktop publishing, we should anticipate a continued fragmentation of the curriculum; it is very unlikely that we will return to a single curriculum in the foreseeable future.

Integrating Mathematical Themes

Let's turn now to some comparable ideas regarding the role of probability and statistics in an integrated curriculum.  At least one of the major calculus reform projects has incorporated a limited amount of concepts from these areas into calculus.  The Harvard materials contain sections on probability distributions as part of a chapter on applications of the definite integral.  In our multivariable calculus materials, which are currently in the development stage, we introduce the notions of least squares and linear and nonlinear curve fitting to sets of data.  We also have a brief introduction to the idea of using Monte Carlo simulations to estimate the values of multiple integrals.


This is admittedly but a small step in the direction of integrating probability and statistics into a Core Mathematics curriculum.  What more can be done?  Let me suggest a few specific ideas.  In my Calculus I class this semester, I was analyzing some one or two parameter families of functions.  One was the family


f(x) = e-(x - a)²/b
Having demonstrated that each curve is centered at x = a and has points of inflection at x = a ± √(b/2), I went off on an unplanned excursion to relate these ideas to the mean and standard deviation of a set of data, introduced the empirical rule for normal populations, and gave a variety of "statistical" applications to reinforce some of the mathematics.  With a little planning, this 20 minute excursion could have been easily extended to incorporate more statistical ideas and some examination of real data sets that follow a normal pattern.  Early in Calculus II, when we consider probability distributions as an application of the definite integral, I will come back to the normal distribution and consider probability problems associated with it in considerably more depth. 


There are many other opportunities is such a course to integrate some probabilistic and statistical ideas.  For instance, when introducing the notion of slope of a tangent line, each student can be given a graph of a function with a tangent line drawn at a point.  The students would be asked to estimate the slope of that tangent line, the results collected and analyzed as a set of data.  Outliers would likely indicate either gross errors in measurement or, more likely, clear errors of interpretation.  The data could then be used to estimate a more accurate value for the slope using the mean and/or median.  The question of increasing the accuracy by using larger sample sizes could be raised.  A comparable exploration could be conducted when the definite integral is introduced by giving each student the graph of a function drawn over a grid and the question of estimating the area is raised.


Similarly, it would be fairly easy to introduce the use of Monte Carlo simulations via computers or calculators in a variety of ways to provide information on different processes, including evaluation of definite integrals.  This could serve as the basis for further discussions on probabilistic reasoning.  We can discuss the accuracy of the results, particularly as a function of the sample size.  We could develop some ideas on confidence intervals for estimating the value of π or a variety of definite integrals or the average value of a function based on simulations.  We could look at Riemann sums for a given function using random points generated in subintervals of a random partition of a given interval.  In a truly innovative course designed to integrate the statistics and the calculus, we could conceivably build on these examples to consider more traditional statistical problems on estimation.  (Admittedly, introducing hypothesis testing would likely be more of a stretch, but it would not be impossible.)  On the other hand, it would certainly be simple to extend a brief introduction of least-squares analysis into a relatively full-blown treatment of nonlinear curve fitting based on the examination of data to find trends and patterns.  The effects and treatment of outliers could also be brought in at this point.


The key to developing such an integrated course is making some very hard decisions:  what topics -- both from calculus and statistics -- should be left out.  It is impossible to succeed in such an effort without very significant cuts from both sides.  We need people from mathematics, from statistics, and from the various client disciplines to sit down together and decide which ideas and methods are so central that they cannot conceivably be omitted and which are merely only terribly important.  It will certainly not be an easy process. 

Preparation for the New Core Curriculum

Despite the most draconian paring conceivable, it is virtually impossible to believe that the material remaining will fit into four semesters.  Thus, it becomes critical to find ways to extend the four semesters available, and this extension will have to take place in the courses that precede the first two years of college mathematics.  The calculus reform movement has de-emphasized the role of manipulative methods and balanced it with a greater emphasis on conceptual approaches using geometric and numerical methods.  As a consequence, much of the time spent on developing high levels of algebraic skill in precursor courses, both in high school and in college, can now be redirected to developing other skills.  In large measure, this is the thrust of the NCTM's Standards  -- less emphasis on routine manipulation and more on conceptual, graphical, numerical and practical approaches.  The colleges and universities are just beginning to see the fruits of the secondary school labors as more and more students move on from such high school courses.


Further, the success of the calculus reform movement is leading to a similar revision of the college-level courses that lead to calculus, courses in precalculus, in college algebra and trigonometry, and in elementary functions.  AMATYC is currently developing a set of curriculum Standards that call for the wide-scale development and implementation of these ideas.  Such courses will similarly devote less time and effort to developing high levels of traditional algebraic skills than their more traditional versions; instead, more emphasis will be placed on conceptual ideas, applications, and perhaps most importantly from our current viewpoint, on different mathematical content.



Another major thrust in the NCTM Standards is to include exposure to statistical ideas and reasoning from elementary school up through the end of high school.  Students are expected to become familiar with looking at data, at observing patterns, at constructing and testing conjectures based on the data, and interpreting their results.  The American Statistical Association is assisting in the implementation of this effort by offering teacher training workshops through its Quantitative Literacy Program.  Thus, we can look forward to the day when the overwhelming majority of students coming into college mathematics courses will have had such experiences.  The kinds of Core courses that may emerge from this conference should certainly be able to build on this.


In addition, there are a variety of other college-level projects underway that have related goals.  For one, I am currently serving as project director of the Math Modeling/PreCalculus Reform Project which has developed a very different alternative to traditional precalculus courses.  The mathematical ideas are all developed in the context of mathematical applications with the same spirit and philosophy that pervade all the reform calculus projects.  Several of the major themes that are interwoven throughout the Project materials  -- data analysis and curve fitting, probability, difference equation models, and linear algebra -- are quite relevant to the issue here.  


The notion of function is totally entwined with data from the very first introduction of the function concept.  After a development of the properties and applications of the most basic families of functions -- linear, exponential, power and logarithmic -- we turn to a full treatment of fitting functions to data to reinforce the behavioral characteristics of each type of function as well as its algebraic properties.  We informally introduce least squares as the means for obtaining the best linear fit to a set of data.  We introduce the correlation coefficient as a measure of the degree of linear relationship.  We then discuss nonlinear curve fitting, have the students perform the appropriate transformations on data sets to linearize them, have the students obtain the equation of the least squares line using a calculator and/or a computer, have them un-do the transformations by hand to practice the desired algebraic properties, and then ask them to interpret the results.  


Subsequently, throughout the course, as other families of functions are introduced, such as polynomial functions, logistic functions or trig functions, we return to the notion of fitting such functions to appropriate sets of data.  At each point, we discuss problems with extrapolating well beyond the set of data, and the uncertainty of such predictions.  We also discuss the idea of critical values for the correlation coefficient and how it depends on the sample size.  No, this is not intended as a statistics course, but we certainly feel that appropriate ideas from statistics can and should contribute to an effective preparation for calculus.


We also weave ideas on probability, particularly the use of Monte Carlo simulations to give information on various processes, into the entire course.  For instance, we look at a Monte Carlo simulation of radioactive decay to give a non-deterministic view to what is actually a random phenomenon and demonstrate how closely the formal treatment with exponential functions mirrors that random process.  We not only consider the nature of the roots of a quadratic equation, but also use Monte Carlo simulations to provide insight into the likelihood that a quadratic, or a cubic, has complex roots.  We develop the binomial expansion in the context of binomial probability;  a standard type of precalculus problem asks: What is the 10th term in the expansion of (x + y)25?  A typical student's reaction is: Who cares!  On the other hand, using the standard test for ESP with a deck of 25 cards consisting of five cards with each of five symbols, we can ask:  What is the probability of obtaining 10 right answers?  Naturally, the students are far more interested in the answer to this question.


We also consider a variety of problems involving geometric probability to prepare students for scenarios they will encounter in calculus.  We introduce the question of estimating the area of a plane region using a Monte Carlo simulation.  We similarly introduce the question of estimating the average value of a continuous function using a Monte Carlo simulation.


We even connect the probability explorations and the data analysis theme by generating sets of random data and then finding the best fit to them from among the families of functions considered.  For instance, by looking at a Monte Carlo simulation for the area under a curve such as y = √x  from 0 to 1, from 0 to 2, ..., we obtain a set of data and the best fit to this set of estimates for the area is given by a power function such as f(x) = .6667x1.497 with a correlation coefficient of r = .99998.  Thus, students can see how one might come to expect that a formula can provide information on the area of a plane region.  


The course is not intended as a probability course.  There are no standard balls-in-urns problems or situations that obviously violate students' intuitive beliefs.  Rather, probability is introduced in the service of preparing the students for calculus while giving them a notion of the concepts and uses of probability.


Another major focus of our course is a study of difference equations and their applications.  This includes first and second order difference equations, both homogeneous and non-homogeneous.  In fact, most of the important models that one typically constructs with differential equations, such as population growth, inhibited growth, level of drug dosage in the bloodstream, radioactive decay, Newton's Laws of Motion and projectile motion in the plane, simple and damped harmonic motion for a spring, and the predator-prey model are treated using difference equations.  Students become used to thinking about rates of change, the relationship between the rate of change and the quantity itself, the behavior of the solutions, their dependence on initial conditions, and how to interpret the solutions in terms of the processes being modeled.


We also have a unit on matrix algebra and its applications much in the spirit of what one would do in a finite mathematics course, not just as a gimmick for solving systems of linear equations.  For instance, we consider models such as Markov chains and geometric transformations, as well as matrix growth models leading to the eigenvalue problem.


Picture a student coming out of such a course, either in high school or in college, and starting the kind of Core Mathematics sequence that might be the solution to the seven-into-four problem.  I'm not sure that "problem" is really the appropriate word;  rather, I see it as an exciting prospect to design and develop those new courses which will build on the students' experiences and will combine those seven semesters in four.
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