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provided differentiation of the ‘Kronecker components’, ¢°, is taken to be ordinary
partial differentiation. In the same manner, for a covariant vector one obtains

— z — 4 ¢ __ c
Ug, p= (ucaa); p= U, béa + ucafz; p—Ugp— ucrab»

again provided differentiation of the ‘Kronecker components’, u,, is taken to be
ordinary partial differentiation. In other words, if Levi-Civita differentiation is
defined for Kronecker rows and columns, it may be extended to all tensors by means
of the product rule.

Moreover, since d5., and d4. , are basically different, we suspect that —I'%, is not an
affine connection. To check this, start from the official change law,

rZﬂ = D:pDZ + I";,,Df:D’,;DZ

In the critical first term, there is a second derivative of Latin coordinates with respect
to Greek, and a first derivative of Greek with respect to Latin. Call this, of type
K J 7!, Now multiply by —1, to obtain :

- FZp = aﬂDZ +(— Tﬁb)DZDZDZ

For an unbiased comparison, a plus is needed in the first term. It can be obtained
from

0=(DiD}), 5 = DiyD} + D}, DED}
Thus, — DD} =D}, DD}, and the law now reads
— Ty =Dy,D2D}+ (~T5y) DD

Therefore, —I'%, is of type K~ 'J?, emphatically not an affine connection. And any
M, of type K~ 1J? would serve.

To sum up, the usurpers &5, and 85, have taught us that a ‘connection’ is really a
pair, (IS, M), one of type KJ ! for differentiating contravariant vectors, and the
other of type K~ 1J2 for differentiating covariant vectors.

5. Conclusion

Well, should not the tocsin be sounded? With Jacobi and Levi—Civita fallen,
Cantor himself may be in peril. Can we be expelled from Paradise, despite Hilbert?
Will the Ghost of Kronecker drive us all mad?

As the chestnut forest tries to overcome the blight, even by subterranean modes,
so everywhere we little men will be rearranging deltas until something gives.

Don’thoard a secret of this gravity. Tell your neighbour; hire a horse and lantern.
The delta-coats are coming!

We interrupt normal programming to bring you the following urgent
message. . . .
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The cornerstone of calculus is the concept of limit. Unfortunately, it is the least
understood notion for most students in introductory calculus. Thus, when they are
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first exposed to limits at the beginning of the course, most students never see beyond
the typical algebraic manipulation and cancellation that allows them to come up with
the right answer. This is exacerbated later in the course when they are presented with
that magic wand known as I’Hopital’s Rule! which allows them to determine limits
of all sorts of indeterminate forms without giving any thought to what the limit
means.

The Harvard Calculus Reform project is intended to redefine the content and the
spirit of introductory calculus and so revitalize the subject. Our feeling is that this
requires achieving a proper balance between three different ways of looking at
calculus—graphical, numerical and symbolic. For too long, calculus courses and the
textbooks on which they are based have emphasized symbolic manipulation to the
point where the other two perspectives have become minimal. Thus, for most
students, the focus of calculus has been on obtaining the identical closed form
solution to the problems that appear in the back of the book. We believe that by
empbhasizing all three aspects (what we call the Rule of Three), students will develop a
far deeper understanding of the concepts, the applicability and the grandeur of
calculus. See [1] for a more detailed description of the project.

In the present article, we will see how this philosophy can be applied to enhance
student understanding of the limit process. In particular, we will indicate how limits
can be reinterpreted from the point of view of Taylor polynomial approximations to
give a much deeper insight into why the limit of a function is the value obtained using
the manipulative techniques.

First of all, every limit problem should be accompanied by a brief computational
investigation. This can be done in two ways. Before applying the usual manipulative
techniques, students should be encouraged to estimate the value of the limit by
calculating the value of the function for several values of the variable near the limit
point using a calculator. Alternatively, after the limit has been formally obtained,
they should be encouraged to check it out numerically by calculator to see that the
values actually converge to the limit. In either way, they develop a far deeper
appreciation of what the limit is. It no longer is just the right number at the back of
the book; rather, it is the limiting value for the function as x approaches a. In this
way, they achieve an emotional conviction for the accuracy of the result as well as a
purely intellectual one.

This type of investigation can be extended by using either a graphing calculator
or a computer graphics program. Have the students graph the indicated function, say
sin x/x, in some neighbourhood of the limit point and then zoom in on the desired
point. Let them see that there is a corresponding value for the limit, or that there is
clearly no limit as the point is approached. This approach naturally extends the ideas
suggested by Steman in [2].

The above methods are essential in conveying to the student the idea of what the
limit of a function is. Unfortunately, they do not easily convey understanding of why
a particular limit is the value obtained. To do this requires a deeper understanding of
the behaviour of the function under investigation near the limit point. This can be
accomplished very easily once the notion of a Taylor polynomial approximation is
available. In fact, the entire subject of Taylor approximations can be introduced at a
much earlier stage of the course with some extremely useful benefits; see [3].

! The name I’Hopital’s Rule is actually a misnomer. The rule was discovered by Johann

Bernoulli. 'Hopital bought it from Bernoulli, published it in his 1696 Calculus textbook and
so got the credit for the rule.
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In a related direction, Mathews [4] discusses the use of the computer algebra
system Mathematica as a means for determining limits through the use of Taylor
polynomials. However, his emphasis is again too much on the what and the how of the
limits and not enough on the why.

Most of the standard limit problems in introductory calculus courses can be
treated extremely effectively using Taylor polynomials to help students see why the
limit is the limit. For example, consider the limit of sin x/x as x approaches 0. We

approximate the sine function with the first few terms of its Taylor expansion and so
obtain

sinx/xx (x—x3/31+25/5D/x=1—%2/6 + x*/120

If we now allow x to approach 0, it is clear that the limit will be 1. The advantage to
this approach is that the behaviour of the transcendental function is,replaced by the
simpler behaviour of the polynomial function in the neighbourhood of the limit
point. Therefore, in this neighbourhood where the approximation is effective, the
function is obviously going to behave as if it were simply 1—x2/6+x*/120. Of
course, this could be treated using a Taylor approximating polynomial of any desired
degree.

Some further examples
Consider the following:

1. (sin5x)/(3x) ~ [(5x)— (5x)3/3! + (5x)°/5!1/(3%)
=(1/D)[5—-53%2/3!+5%x*/5!]

and this clearly approaches 5/3 as x approaches 0.

2. (I—cosx)/x?x~[1—(1—x22!+x*/41 —x5/6!)]/x2
=1—x?/41+x*/6!

and this clearly approaches 1 as x approaches 0. There is no need to apply the highly
artificial I’Hopital’s Rule twice just to obtain the answer, but not to convey any
understanding.

3. [exp (x)—1]/x=[(1 +x+x*/2+x°/6)—1]/x
=14+x/2+x*/6—1 as x—0.
4. Suppose that it has been established that
limx*=1
x—0
Then using the linear approximation to the sine function, we obtain
lim (sin x)* =1lim(x)*=1
x=0 x=0

also.
We can also use some variations of these ideas to investigate several other
standard limits. For instance, consider

Iim(1+x/n)"

n—w
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for any value of x. We expand the above expression using the binomial theorem
to obtain

(1 +x/n)" =1 +n(x/n)+3n(n—1)x?n? +(1/3)n(n—1)(n— D3 nd+. ..
=1+x+ % 2)(n—1)[n+(33)(n—1)/n]l[(n—2)/n] +...
which approaches
T+x+x%2+x331+...
as n approaches co. That is,
lim (1 4+ x/n)" =exp (x)
In a similar way, we can show that

Iim(1+1/x)*=e

x—n

Deriving ’Hopital’s Rule
The above ideas can be expanded into an interesting and yet relatively simple
proof of ’'Hopital’s Rule in the restricted case where f(a)=g(a)=0. We seek to
determine the limit:

lim £(x) ()

if it exists.
Suppose that both f(x) and g(x) possess derivatives up to order n, for some n> 1,

at the point x=a. We can then approximate each one of them by its corresponding
Taylor polynomial approximation of degree » at a:

flx) = fla)+f'(a)(x—a) +f"(a)(x—a)*/|2!
+. .. +fa)(x—a)"[n!
2(x) & g(a) +g'(a)(x—a) +¢"(a)(x — a)?|2!
+...+£"a)(x—a)"/n!
and so, since f(a)=g(a)=0, their ratio is simply
@ N fl(a)x—a)+f"(a)(x—a)*[2!+. .. + 1™ (a)(x—a)"|n!
2x)  gla)x—a)+g (@)(x—a)* 2! +...+g"(a)(x—a)"[n!

_f(@+f(@)(x—a)2 ... +f®(a)(x—a)" " /n!
T d@)+g (@) (x—a)2 +. .. +g"(a)(x—a)""}/n!

Therefore, in the limit as x approaches a, we obtain

lim f(x)/g(x)=f"(a)/¢'(a)

x—a

provided that g'(a) exists and f'(a) and g('(a) are not both 0.
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Moreover, if f'(a) =g'(a) =0, then it is clear that the original limit can be evaluated
in terms of the ratio of the second derivative terms, and so forth.

Alternatively, we could derive ’Hopital’s Rule precisely by using Taylor’s
Theorem with the Lagrange form or the remainder. Thus

fx) _fl@x—a)+f"(@)x—a)?/2!+... +f"(a)(x—a)"/n! + R,
gx) g@(x—a)+g"(a)(x—a)?2'+ ... +g™(a)(x—a)"n!+ .S,

where
R,=f"* D(C )(x—a)"* Vf(n+1)!
Sa=f " CY(x—a)"* Vl(n+ 1))

and where C; and C, are both between a and x. Clearly, we can cancel out a factor of
(x—a) and so, in the limit as x approaches a, we again obtain I’Hopital’s Rule.

In conclusion, the author feels that the above ideas relating limits and I’'Hopital’s
Rule to Taylor polynomial approximations is extremely beneficial to students.
They will not only develop a better feel for limits, but also see some nice applications
of other ideas of calculus, such as Taylor polynomials and the idea of approximation
of one function by another. This reinforcement through repetition will serve them
well in appreciating the power of approximation methods in other, more so-
phisticated contexts.
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