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ABSTRACT: The authors describe a simple cooling experiment that can
be conducted in class at the college algebra, precalculus, calculus, or
differential equations level. They utilize the notion of fitting func-
tions to data to determine the best exponential function to fit the
experimental data while reinforcing fundamental mathematical con-
cepts. They then extend the approach to identify the underlying scien-
tific principle, Newton’s Law of Cooling, by solving either a difference
equation or a differential equation.
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INTRODUCTION

For much of the last century, mathematics and the various scientific disci-
plines have become increasingly isolated from one another. This has cer-
tainly been reflected in our curricula, where the applications taught in the
mathematics courses tended to be somewhat artificial and where the other
disciplines teach more and more of the mathematics they need.

In the last few years, things have started to change for a variety of
reasons. Traditional discipline lines are becoming increasingly meaningless
as current research and developments occur in fields that overlap two or
more disciplines. This is reflected strongly in the scientific and engineer-
ing workplace, which is increasingly interdisciplinary in nature. The reform
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movement in mathematics has, among other things, placed a renewed em-
phasis on realistic applications to motivate the mathematical developments.
Finally, modern technology now allows us to do things in the mathematics
* classroom that previously would have required moving an entire class over
to a physics, chemistry or biology lab.

In the present article, we will illustrate how such a technology-oriented
activity can be used in a mathematics classroom at the college algebra,
precalculus, calculus, or differential equations level. Such an activity

e gives an experimental dimension to the mathematics,
o reinforces fundamental mathematical ideas and thinking,
e stresses the interplay between discrete and continuous perspectives,

e motivates the students to appreciate the value of the mathematics
they are learning, and

e demonstrates the scientific method of using experiments to deduce
physical laws.

Our experiment is based on Newton’s Law of Cooling.

THE EXPERIMENT

We presuppose that students have been introduced to the notion of families
of functions, whether in college algebra or a more advanced course. In
particular, we presume that the students are sufficiently familiar with the
behavioral characteristics of families such as linear, exponential, and power
functions. We also presume that the students have been exposed to the idea
of fitting functions to data, a powerful idea that has become fairly common
because of the capabilities of graphing calculators and spreadsheets.

To run a simple experiment on temperature, all that is needed is a
Calculator Based Laboratory (CBL) device with the temperature probe that
comes with it, a graphing calculator with display device, two coffee mugs,
and an immersion heater. In addition, a calculator program, such as the
program Heat (or an equivalent one) that can be downloaded from the Texas
Instruments website, http://www.ti.com/calc/docs/downloads.htm, is
needed. (Comparable programs are available when a computer-based CBL
unit is used.)

Fill one mug with cold water (a couple of ice cubes are fine, if available).
Fill the other mug with warm water and heat it until the water just be-
gins to simmer. Place the temperature probe into the heated water until it
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essentially reaches the temperature of the water. Then start the program
HEAT. It will prompt you for the time interval between measurements; we
suggest one-second intervals. Just as you are about to begin the data col-
lection process, remove the probe from the heated water and immediately
immerse it in the cool water. The program collects 36 temperature read-
ings and displays the data graphically on the calculator. A typical set of
data from such an experiment is shown in Figure 1; the associated table of
temperature readings is shown in Table 1.
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Figure 1. Scatterplot of experimental data on temperature readings.

Time| 1 2 3 4 5 6 7 8 9 10 | 11 12
Temp|42.30|36.03)30.85]26.77(23.58[20.93[18.79{17.08]15.82{14.77|13.82|13.11
Time| 13 | 14 | 15 | 16 | 17 [ 18 [ 19 [ 20 | 21 | 22 | 23 [ 24
emp|12.51{11.91|11.54/11.17]|10.67[10.42]|10.17} 9.92 [ 9.80 [ 9.67 | 9.54 | 9.42
Time| 25 | 26 | 27 [ 28 | 29 [ 30 [ 31 [ 32 | 33 | 34 | 35 | 36
[Temp| 9.29 |1 9.16 [ 9.16 | 9.04 { 8.91 | 8.83[8.78 [ 8.78 [ 8.78 | 8.78 | 8.66 | 8.66

Table 1. Experimental Data — Temperature (°C) versus time.

THE MATHEMATICAL INVESTIGATION

Prior to conducting the experiment, it is effective to ask the students to
predict the temperature pattern they expect to see. Does the temperature
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decrease linearly or, if not, does it decrease in a concave up or concave
down manner? Once they are all convinced of the expected pattern, the
experiment serves to reinforce their intuition.

Once the data has been collected and displayed, students should be
asked to suggest possible candidates among the usual families of functions
studied that behave in the manner shown to construct a continuous model
to capture the trend in the discrete data points. Typical responses should be
either a decaying exponential function or a decaying power function. With
the calculator, it is quick and easy to try either or both of these possibilities,
and both give reasonably good fits to the experimental data, though neither
is an exceptional fit. However, the power function is not a good model for
the process because it has a vertical asymptote at time ¢t = 0.

At this point, we would lead the students to recognize that both func-
tions decay to zero while the temperature readings decay to the temperature
of the cold water. For our experimental data above, this is about 8.6°C.

The natural question to raise then is: How do we take this into account
mathematically? With a little prodding, it is reasonable to expect that sev-
eral students will suggest subtracting the 8.6 from each of the temperature
readings to obtain a set of data that decays to zero. Having done this to
the temperature data, the calculator then quickly provides the best-fit ex-
ponential function to the transformed data. For the above readings, this
is

f(t) = 35.4394(0.8480)".

The graph of this function is shown superimposed over the transformed
data in Figure 2 and we see that there appears to be an extremely close
agreement. The corresponding correlation coefficient is r = —0.9948, which
is exceptionally close to 1.

The question can then be posed about how we create a function that fits
the original data and again it is reasonable to expect a number of students
to suggest adding the 8.6 to the function f(t) to create the final expression

T(t) = 8.6 + 35.4394(0.8480)".

This function is shown superimposed over the original temperature data in
Figure 3. Along the way, there are many opportunities to reinforce ideas
about shifting functions (including the tabular function) and the behav-
joral properties of the functions being used. It is also an especially good
opportunity to point out the horizontal asymptote in a practical context.
Finally, we note that the continuous model is an excellent fit to the discrete
experimental data.

100



Gordon and Gordon

Time (1 - 36 seconds)

Figure 2. The exponential function that best fits the transformed data.
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Figure 3. The shifted exponential function vs the experimental data.
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We note that the entire process described can be done in about 15 to
20 minutes in class, so it does not entail losing a significant amount of class
time. On the other hand, the gain in student motivation and understanding
can certainly be significant.

THE UNDERLYING SCIENTIFIC PRINCIPLE

The above mathematical analysis is limited to merely observational and ex-
perimental activity. However, the hallmark of the sciences is developing an
understanding of the actual process and identifying an underlying scientific
principle. With this in mind, let’s reconsider the experimental data.

In the process of learning about the characteristics of linear functions,
we presume that students are familiar with the fact that a linear function
is characterized by constant differences between successive terms for a fixed
change in the independent variable. We can build on this by pointing out
that considerable information can be obtained about a process by looking
at the differences in the data readings. To do this, we use a simple calcula-
tor program (given in the Appendix) to calculate the successive differences
for the experimental temperature readings. (Note that the CBL’s HEAT
program stores the time readings in List 3 and the temperature readings in
List 4 for the TI-82 or TI-83 calculators. We use List 5 for the shifted tem-
perature values, L4 - 8.6. The program DELTA then stores the successive
differences in List 6.) If we look at these differences numerically or look at a
plot of the differences, AT, versus the time readings, t, as shown in Figure
4, it is evident that AT is not a linear function of ¢.
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Figure 4. Scatterplot of successive differ-
ences of temperature readings vs time £.
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Figure 5. Scatterplot of successive differences of
temperature readings vs temperature T'.

However, a very different picture emerges if we plot AT versus T, as
shown in Figure 5. From this, it is clear that AT appears to be a linear
function of T. Incidentally, note that the isolated points at the lower right
corner of Figure 5 correspond to the earlier high temperatures where there
is a large difference in temperature values; as the temperature drops, the
differences between them decrease and the corresponding points are ever
more tightly clustered in the upper left corner of the scatterplot. Using the
calculator, we find that the best linear fit to these data values is

AT = —-0.1851T + 1.6740.

The corresponding correlation coefficient is r = —0.9976, which indicates
an almost perfect linear fit.
If we now factor out the coeflicient of T, —0.1851, we obtain

AT = —0.1851(T - 9.04).

Notice that the value -9.04 that occurs is fairly close to the temperature
of the cool water. (To be honest, the authors expected that it would be
closer, though that could be attributable to errors in measurement.) In
other words, the change in temperature AT is proportional to the difference
between the temperature T of the probe and the temperature of the medium,
8.6. It is precisely this observation that is the basis of Newton’s Law of
Cooling.
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We can actually carry this analysis a step further. First, we consider
what can be done at a precalculus level where the students have been ex-
posed to some simple ideas about difference equations. The expression

AT, =Thyq — T = —0.1851T, + 1.6740,

which is equivalent to
Tht1 =T, — 0.1851T,, + 1.6740 = 0.8149T,, + 1.6740,

is a relatively simple difference equation. The general solution to the differ-
ence equation

Tptl = ATy +b v
is given by
b
1-a’

where C is an arbitrary constant. See, for example, [1, 2, or 3]. For our
coefficients, we have

z,=Ca" +

b 1.6740
1-a 0.1849

Thus, the general solution for our difference equation is

= 9.04.

T, = C(0.8149)" + 9.04.

If we impose the initial condition given by the initial temperature of the
probe, Ty = 42.3, we obtain the specific solution

T, = 33.26(0.8149)" + 9.04, [6)

which is quite close to the function T(t) = 35.4394(0.8480)* + 8.6 that we
obtained above by fitting the exponential function to the data.

Alternatively, at the calculus or differential equations level, we might
reason that if the time intervals between measurements is fairly small, then
the differences are good estimates of the derivative of the temperature func-
tion and so we have the simple differential equation

T' = —0.1849T + 1.6740 = —0.1849(T — 9.04).
When we integrate this equation, we obtain

T =9.04 + Ce™ 184
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where C'is a constant of integration. When we use the same initjal condition
here, we find that

T = 9.04+ 33.26e0184% (2)
9.04 + 33.26(0.8312)".

The discrepancy between the solution to the difference equation (1) and
the solution to the differential equation (2) is attributable to the fact that
we used the forward differences, AT = Tht+1 — T, as estimates for the
derivative 7”. The use of central differences instead of forward differences
would give better approximations to the derivative 7" and so would likely
improve the accuracy of the estimates.
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APPENDIX - CALCULATOR PROGRAM DELTA

1-7

While I < 36
Ly(I+1)- Ly(I)—Le(I)
I+1-1

End
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