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Abstract  Courses below calculus need to be refocused to emphasize conceptual understanding and realistic applications via mathematical modeling rather than an overarching focus on developing algebraic skills that may be needed for calculus.  Without understanding the concepts, students will not be able to transfer the mathematics to new situations or to use modern technology wisely or effectively. Without a modeling approach, students do not recognize the mathematics when it arises in courses in other fields.  And, in an era when any routine operation can be performed at the push of a button, courses that make development of algebraic skills the primary objective are producing nothing more than imperfect organic clones of existing technology.


The noted science fiction writer Isaac Asimov (1958) once wrote a short story entitled The Feeling of Power in which he envisioned a far future society in which every human being was connected to a universal computer that would answer all questions.  As a consequence, mankind had completely lost all knowledge of mathematics because no one had a need to perform any mathematical operations.  Today, I suspect that some critics feel that we have taken the first steps down this path, in only 50 years rather than the millennia that Asimov pictured, because of the advent of CAS technology and its growing use in mathematics education.  

The title of this article and the theme of the entire volume, however, raise a significant question: Is there really a difference between the mathematics needed for the new century and the mathematics needed for the twentieth century or, for that matter, the nineteenth century or any previous century?  The answer, I believe, is an unequivocal yes!  It is not just because of technology, but technology certainly has a major role to play in this change.

Changes in the Undergraduate Curriculum Over the last decade, very significant changes have taken place in the undergraduate mathematics curriculum in the United States.  Comparable and even more far-reaching changes have been taking place at the pre-collegiate level, although that is not the central focus of the present article.  The wave of change in collegiate mathematics began in calculus and is now advancing throughout the rest of the curriculum.

Let's consider the role of algebra in the traditional mathematics curriculum.  In Algebra I we teach most of the fundamental rules and methods of manipulative algebra.  While we taught it, they didn't learn it.  Therefore, at least 80% of Algebra II is devoted to repeating the same topics.  So, why does the next course in college algebra, or precalculus for that matter, still reteach the same rules and methods of algebra?  You got it – we still taught it all, but most of them still didn't learn it.  Of course, there are always a few exceptions – those students who are exceptionally good at the manipulations, who enjoy doing them for the fun of it.  All of you were among those exceptions; otherwise you wouldn't be reading this.

There is a lot of truth in the old adage "you take calculus to learn algebra".  For the first time, in calculus, students are routinely expected to use algebra either to solve substantial problems or for lengthy derivations.  It is no longer just a meaningless game of drill and more drill for no apparent purpose -- if you can't do the algebra, then you can't do the calculus.  Unfortunately, in these traditional calculus courses, the emphasis shifted to doing endless drill and practice on long lists of derivative and integration problems.  Thus, in the process of finally learning some algebra, most of these students learned relatively little calculus other than things like the derivative of x3 is 3x2.  Relatively few students ever came to understand what the derivative of a function really means, but most could usually differentiate quickly and, hopefully, fairly accurately.  So there was the corollary to the above adage, "you take differential equations to learn calculus".

Now the calculus reform movement has come along to insist that one should learn calculus while taking calculus.  The calculus reform projects have succeeded in this by, among other things,

· placing far greater emphasis on conceptual understanding of the ideas of calculus, 

· achieving a better balance among graphical, numerical, symbolic, and verbal emphases, and 

· placing greater emphasis on more realistic applications from the point of view of mathematical modeling with differential equations.  

In order to accomplish this, however, there has been to varying extents a concomitant reduction in the traditional emphasis on symbolic manipulation. The courses are the better for these changes since they focus on calculus and its value; the students are the better for it because they are learning calculus and how to apply it; and the instructors are the better for it, since they feel they are finally teaching mathematics and not simply more algebra.  

The changes in calculus, while originally envisioned as being primarily content changes, quickly turned into pedagogical changes as well, with frequent emphasis on more active learning environments such as collaborative and cooperative learning, emphasis on individual and group projects, and emphasis on writing and communication.  Assessments of the status of the calculus reform effort appears in Tucker and Leitzel (1995) and in Ganter (2001); discussions on the implementation of such courses is in Roberts (1996).  

These new calculus courses have also had their impact in the high schools throughout the United States.  The AP (Advanced Placement) Calculus program, which is run by the College Board, has been growing incredibly rapidly – on the order of 40% per year.  In 2002, some 200,000 high school students took the national exam to earn college credit for this AP course.  According to some reliable estimates, roughly two to three times as many high school students either take AP calculus and don’t take the exam or take a non-AP calculus (usually only polynomial calculus) course. Currently, more students are taking calculus in high school in the U.S. than are taking it in college.  Moreover, the AP calculus course has changed dramatically in recent years to reflect the same ideas and goals as the calculus reform efforts in the colleges.

Moreover, the changes in both the content and pedagogy in calculus have set the stage for comparable changes in the differential equations courses at the collegiate level.  Instead of focusing on solving differential equations in closed form by applying every conceivable kind of integration technique, the new courses emphasize both the modeling aspect – how differential equations arise to model real-world phenomena – and the behavior of the solutions.  Moreover, realistic models tend not to be integrable in closed form, but rather require the use of technology that will display the solutions graphically or numerically; computer algebra systems (CAS) are widely used in these courses to perform the actual integration, if it is even possible.  Thus, as with the calculus courses, the new differential equations courses also seek to achieve a better balance among graphical, numerical, symbolic, and verbal ideas, with a corresponding reduction in the use of heavy manipulation.

Comparable changes are working their way, though more slowly, down the curriculum through those courses that were the traditional calculus preparatory track.  A variety of projects have developed alternative courses at the precalculus, college algebra, and developmental algebra levels that place a lessened emphasis on many of the routine algebraic skills, particularly those associated with factoring polynomials and operations with rational expressions.  Instead, these new courses focus more on conceptual understanding of the fundamental mathematical ideas – variable, function, behavior of functions – as well as on realistic applications of the mathematics.  They often feature "new" mathematical content, such as 

· the use of real-world data (once thought to be the domain of statistics) and the notion of fitting a function to the data), 

· aspects of probability, 

· recursion and iteration (the mathematical language of spreadsheets), 

· substantial applications of matrix algebra that go well beyond merely solving systems of linear equations.  

The issue of preparing students for the new calculus courses are discussed in Solow (1994) and Baxter Hastings (2004); descriptions of award-winning reform projects that capitalize on the use of modern technology at all levels of the mathematics curriculum are in Lenker (1998).

In many ways, this reflects a new paradigm for the mathematics that is actually used in practice.  On the left of the table below, we show a representation for the mathematics used by practitioners in 1960, say.  Virtually every problem considered was continuous and was approached from the point of view of seeking a closed-form, deterministic solution.  Relatively few problems were discrete in nature; some were stochastic in the sense of having a random component.  The mathematics curriculum of the time typically mirrored this paradigm closely.  At the start of the   new millennium, a very different paradigm exists in terms of the mathematics used, as shown to the right in the table – virtually every problem now has a major discrete component, if it is not inherently discrete; even continuous models must be discretized to permit computational solutions.  Virtually every problem today has a random component – there is always some degree of uncertainty.  Yet, the mathematics curriculum has barely adapted to reflect these new needs.  For the most part, we still give the same content, though there is a little more emphasis on statistical reasoning and some discrete topics have worked their way into the curriculum.  One of the major challenges we face is integrating more of these discrete and stochastic ideas and methods into the curriculum while keeping its focus on preparing students for calculus.  This challenge is discussed in detail in Dossey (1998).
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What is Algebra?   But, what of traditional algebraic skills?  I firmly believe that in today's world, 

Far more people need to know the concepts of calculus than need sophisticated manipulative algebra.
People must be able to interpret graphs and tables.  They must understand the concept of a functional relationship and how to use it intelligently to make predictions.  They have to understand relative growth or decay rates (the real use of percentages); they must know about increasing or decreasing rates of growth (concavity).  They must be aware of the notion of accumulation.  Many, at some level, must be aware of the notion of parameters and how changes in parameters affect the behavior of a process.  Many must know something about the modeling process.  

But very few people must be able to factor something like x8 - y8, let alone


cos8 t - sin8 t.
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Very few must be able to reduce

to the obligatory 1.  In fact, other than in our algebra courses, how many of us in mathematics ever actually need to perform such operations?  It is easy to picture an academic research mathematician whose teaching load consists exclusively of liberal arts courses or introductory statistics along with virtually any upper division or graduate course who will never need to use any sophisticated algebraic skills.  Equally important, much the same can be said about most engineers and scientists.  It will be increasingly true in the future as their training in engineering and science depends more heavily on technology – DE solvers and plotters, CAS systems, and so forth.

Does this mean that there is no longer a need to teach algebra?  That students will be unable to perform any algebraic operations whatsoever?  Certainly not!  But, there likely will be a very different balance.  Certain algebraic concepts and techniques will continue to be taught and, if anything, are likely to be emphasized more than in the past.  For instance, students require a far deeper understanding of algebraic notation, particularly in the sense of functional notation, than most currently develop.  Similarly, operations with properties of exponents and logarithms fall into this category because they are needed to solve many of the types of problems that are getting greater emphasis.  

But many of the other skills, particularly those associated with solving equations, will receive far less attention.  Why attempt to factor a polynomial to find its roots if you can locate any real root to any desired degree of accuracy by graphical means or obtain closed form expressions for any rational roots by use of a CAS system?  Why apply an inverse trigonometric function to find just one possible solution to a trig equation if you can locate all solutions graphically?  Why solve a system of linear equations by hand if it can be solved by converting it to a vector-matrix equation and pushing the appropriate keys on the calculator?

What we need is a redefinition of the word “algebra” and the courses in which it is taught.  Algebra should be viewed as far more than just a collection of manipulative tools for moving symbols around and for solving carefully constructed equations.  This is especially true in today’s fast changing world.  Traditional courses at the precalculus and college algebra level were designed primarily to develop algebraic skills that once were essential for success in later courses.  The reality is that only a small fraction, perhaps on the order of 10%, of the students in the U.S. who take college algebra courses ever go on to start mainstream calculus (Dunbar, 2003).  Furthermore, the wide availability of technology and the changing requirements, especially in the partner disciplines, requires a rethinking of this paradigm.  For the results of a series of interviews with leading educators in the client areas, see Gordon (1996);  comparable ideas are voiced in Ganter and Barker (2004).  Currently, students in upper division courses in engineering and the sciences do relatively little with pencil and paper mathematics; instead, they focus on developing mathematical models to describe real-world phenomena.  These models typically involve differential or difference equations, matrices, or often probabilistic simulations.  The students examine the behavior of the solutions, particularly as the parameters underlying the phenomena change.  

Simultaneously, students in business, the social sciences, and the biological sciences are expected to recognize trends from sets of data, construct appropriate mathematical models to fit the data, and make corresponding predictions based on the models developed.  This is actually remarkably similar to what students in lab courses have been doing for centuries; the difference is that the students in the business and social science courses typically use spreadsheets for the analysis rather than hand-drawn graphs.  

In the minds of most students, however, there is little connection between what we do in math classes and what they see in other disciplines.  In mathematics, the problems look like: Find the equation of the line through P(1,2) and Q(4,8) while in their other courses, the problems are more like: Given a set of points, draw the line that best fits the points, find its equation, and answer the following questions about the situation.   Faculty in the other fields complain that what we teach in mathematics is too abstract.  I suspect that what they mean is that it is context-free and very idealized, to the level of sterility.  Change the letters used for the variables to anything other than x and y or use numbers that are not one-digit integers and students do not recognize that the same ideas and techniques apply.

In general, the primary emphasis on algebraic manipulation in traditional preparatory mathematics classes does not provide the foundation that students now need for all of these disciplines, nor does it adequately prepare them for the new calculus.  Instead, a broader prepara​tion is needed, one that better reflects the practice of mathematics.  Students must learn to:

1.  Identify the mathematical components of a situation (i.e., model it).

2.  Select the right tool (paper-and-pencil, graphing calculator, CAS package, spreadsheet, 

etc) to solve the problem.

3.  Interpret the solution in terms of the original situation and, if necessary, change the 

assumptions used (i.e., introduce additional factors) in the model.

4.  Communicate the solution to an individual who likely knows less mathematics, but 

who pays their salary.

The focus of much of traditional mathematics education, though, has been to emphasize one particular set of tools, the traditional algebraic ones, with little or no emphasis on any other tools or any other part of this paradigm.  However, it is certain that no one alive can anticipate the kinds of tools that will be available ten years from now.  From this point of view, it is clear that

No college graduate will be paid $30,000 per year to solve problems whose solutions were memorized in high school or college mathematics courses.
Yet, for most of us who teach math, our focus has been far too much on having the students practice a given set of problems until they could do them in their sleep (perhaps that is even why they fall asleep) and then have them regurgitate these solutions on an exam to prove how much they had learned.  

For that matter, given the existing technology (such as the TI-89 calculator or a comparable CAS software package),

No college graduate will be paid $30,000 per year to be nothing more than a poor imitation of a $150 calculator!  Yet, no matter how much we drill our students, we will never make them as fast or as accurate as that calculator.
 
It is essential that we aim to produce something far more valuable than an imperfect organic clone of a calculator or computer program.  

By the same token, the mathematics curriculum, be it at the college level or the secondary level, is essentially the same as the one most of us went through.  We are very comfortable with it;  we know what it does well – by replicating the experiences we went through, this curriculum produces clones of ourselves!  Unfortunately, only a very small percentage of the students we see have the capability (let alone the desire) of fitting that mold.  And worse still, the value being placed on people with that kind of training is diminishing.  At the same time, we are not providing for the needs of the  vast majority of students who are taking our introductory courses; there is a good reason why, nationally in the U.S., enrollment in mathematics drops by about 50% in each successive math course from tenth grade algebra on up!

What, then, should a modern algebra course look like?  

· Above and beyond all else, students must know what a variable is and what a function is.

· They must see variables as representing the values of quantities, and in order to meet the needs of other disciplines, the letters used for variables should not be only x and y.

· They must achieve a better understanding of the difference between independent and dependent variable.

· They must see functions as formulas, as graphs, as tables, as verbal depictions, and as dynamic processes that describe realistic phenomena. They must understand how each of these representations gives a different perspective and they must know how to move between any one representation and another.

· They must come to understand the limitations in any given function, in the sense of domain and range (but not merely by looking for points where one divides by zero).

· They need to recognize certain classes of functions, especially linear, exponential, power, simple polynomials, and periodic and this recognition should include the formulas and the graphs.

· They need to understand fundamental ideas about the behavior of functions -- growth versus decay, concave up versus concave down and what that means in terms of the increasing or decreasing rate of growth or decay.  Ideally, if a student sees a set of data, he or she should be able to match it with appropriate candidates for functions that behave in the same manner.

· They must understand the effects that the parameters in the expression for these functions have on the behavior of the function;  the slope of a line is not just so many boxes over so many boxes -- it depends on the scale, it tells you how fast the quantity is rising or falling.  They should understand the effects of transformations on a function -- stretching and shifting.

· They should see how questions that naturally arise from contexts in a predictive sense lead to equations; they should have a much better understanding of what it means to have a solution to an equation.

· They should become comfortable with a variety of different kinds of tools -- symbolic, graphical, and numerical -- for solving equations.  For example, any equation involving a single variable can be solved using graphical or numerical methods to any desired degree of accuracy; certain relatively simple kinds of equations can be solved exactly using symbolic methods.

· They should also understand the (current) limitations of these systems.

· They should see how systems of linear equations, for instance,  arise constantly throughout mathematics, not just during a unit on the subject.  They should spend less time on the mechanics of finding those solutions, particularly on systems of three equations in three unknowns or larger, but should spend far more time on understanding where the systems come from and what the solutions mean.

· They should develop the ability to interpret their answers to solve problems arising from contexts and should develop the judgment to recognize when answers are reasonable or not.

· They should develop their ability to communicate mathematics, both orally and in writing.

Some Examples We next consider some examples of topics and approaches that deserve to be included in any modern mathematics curriculum.

1.  Fitting Lines to Data As an immediate application of the notion of a line or a linear function, students should be exposed to the idea of finding a line that fits a set of data.  As mentioned above, this is the direct connection between the usual mathematics taught and the mathematics that is used in almost every other field of endeavor today.  In particular, I strongly recommend having each student collect a set of data on a topic of personal interest to him or her, find the equation of the line that, to the eye, is the best fit to the linear trend in the data, raise several questions of a predictive nature in the context of the data, and use the linear model to answer those questions.  Finally, I would have them write up their results in a formal report that serves as part of their overall assessment in the course.  Incidentally, although most calculators will do this kind of analysis, I strongly prefer to have my students do it by hand to assure that they understand what the process is all about.  Eventually, I expect them to use their calculators, but not before they have developed a solid understanding.

One immediate advantage of this is that it makes the mathematics each student’s own!  It is no longer my mathematics and my applications, but rather each of the students has internalized the value of the mathematics.  It also provides an ideal mechanism for incorporating some writing and communication into the course in a meaningful way.  Also, it gives me the opportunity to see many of the students’ misperceptions about the topic that often would not be evident from exam questions.
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2.  Fitting Functions to Data As each class of functions is introduced, it is equally valuable to focus on the question of fitting such a function to appropriate sets of data.  This gives the opportunity to reinforce both the behavioral characteristics and the algebraic properties of the functions while simultaneously developing additional mathematical concepts and a feel for the applicability of the subject.  For instance, consider the data in the following table on the growth of the U.S. population (in millions) from 1780 through 1900.

Just as a set of data follows a linear pattern if the successive differences are constant (presuming a uniform spacing in the values of the independent variable), a set of data follows an exponential pattern if the successive ratios are constant.  Thus, if we examine the ratios of successive population terms, we observe that they are roughly equal, which indicates that the population values grow approximately exponentially.  Figure 1 is a plot of the actual data values showing the population versus the number of years since 1780;  the scatterplot indicates the apparently exponential pattern. 

When you suspect that a certain phenomenon follows an exponential pattern of the form P(t) = B at, then


log P  =  log B + t log a.
That is, log P is a linear function of t and so we should expect that a plot of log P versus t should be linear.  Figure 2 shows the associated plot of the transformed data with log (P) as a function of t.  It is clear that the transformation has linearized the data.

 
Using the ideas of linear regression analysis previously developed, students now find the line that best fits this transformed data;  their calculator or computer program tells them it is generically of the form  Y  = 0.121X + .487, but they must interpret this in terms of the actual variables used as


log P  =  0.121t + .487 .

They then must undo the original transformation by applying the inverse function and all the perti​nent operations to obtain

P  =  10log P
   =  100.121t + 0.487
   =  100.121t(100.487
   =  (100.121)ADVANCE \r1t((100.487)

  

 =  3.069((1.321)t
Notice the level of algebra needed to undo this transformation; it is actually considerably more sophisticated than one would normally encounter due to the real-world numbers involved.  However, the students do not complain because they are doing the work in the context of answering questions of interest, not merely to develop some algebraic skills that they see no need to pos​sess.  We show how well this exponential function fits the original population data in Figure 3.

Incidentally, notice that the base, or growth factor, for this exponential function is 1.321, so that the corresponding growth rate is 32.1% per decade, or somewhat over 3% per year, as we anticipated from the successive ratios.  Furthermore, although today’s calculators will give the best-fit exponential function based on this approach directly, I personally find it is worthwhile using this transformation approach as early motivation for doing some substantial manipulations with symbols; later on, I would  “let the cat out of the bag” and tell them that the work can be done at the push of a button.

Also, we analyzed the U.S. population values only up through 1900 because the rate of growth has diminished considerably during the 20th century (it is currently about 1% per year), as can be seen from the scatterplot in Figure 4.  We could return to study the U.S. population over the entire 1780-2000 period in the context of discussing logistic, or inhibited, growth.  

In a comparable way, if one suspects that a set of data values follow a power function of the form Q = B( xp, then log Q = log B + p log x, which means that log Q is a linear function of log x.  Therefore the data can be linearized by plotting log Q versus log x and the linear regression analysis technique can be used to find the equation of the best fit linear function.  The students then need to undo the transformation using all of the usual properties of exponential and logarithmic functions.  Again, the level of manipulation is far greater than one would normally expect with simple artificial problems, but the students are willing and able to rise to the occasion.

Incidentally, this topic is also an ideal one on which to base individual student projects.  It also naturally connects the mathematical content of our courses to what is done in the lab sciences where students are typically handed a sheet of “magic” paper – semi-log or log-log graph paper -- that magically transforms nonlinear data into straight lines.  It would be very appropriate for us to provide the students (and typically the faculty in the other disciplines) with the mathematical understanding that underlies this process.

3.   Modeling Periodic Behavior  Periodic phenomena abound in the real world, but they cannot be modeled mathematically by functions as simple as y = 3 sin 2x.  For example, the number of hours of daylight on a given day of the year at any particular location is a periodic function of time.  If the location is San Diego, say, then the number of hours of daylight can be modeled by


H(t)  =  12 + 2.4 sin ((2π/365)(t - 80)),

where t is the number of days from January 1 of any given year.  What do the different parameters mean?  The 365 clearly represents the number of days in a year, or the length of a cycle.  The 12 represents the average number of hours of daylight, which occurs on the spring and fall equinox.  The 2.4 represents the maximum variation above and below the middle value, so the longest day in San Diego has 14.4 hours of daylight and the shortest day has 9.6 hours.  What about the 80?  Since it is related to the variable t, it must represent some particular date and, if you count off days, you will find that the 80th day of the year is March 21, the spring equinox, when exactly 12 hours of daylight and 12 hours of darkness occur.  

In the process of analyzing these parameters, the students achieve a much deeper under​standing of what amplitude, period, frequency, vertical shift, and phase shift signify because the terms arise in a meaningful context.  Once such a function is available, it is possible to ask a variety of pertinent questions, such as:  How many hours of daylight would you expect on a particular date?  When will there be 13 hours of daylight in San Diego?  

As a follow-up project activity, I give my students a set of data on the historical average daytime high temperatures in a city every two weeks and ask them to create a sinusoidal model by hand that fits the data.  The data values do not precisely fall onto a sine or cosine curve; therefore the students must devise strategies on how to use the data to estimate the vertical shift (some think of averaging the high and the low reading; others decide to average all the readings).  They then must determine the amplitude, but that depends on the strategy they used to find the vertical shift.  The period and frequency are easy (if they realize that over the course of a full year there are 365 days, not the 349 shown in the data set), but the phase shift is quite challenging, particularly if they want the resulting sinusoid to mirror the behavior of the data points well.

Concluding Remarks There is an old Chinese curse that says: You should live in interesting times.  Those of us in mathematics education likely feel that we have been hit with a multiple whammy of that curse.  And, the reform movement is, in my opinion, merely gathering steam.  We will face increasing pressures from many sides for greater changes in the coming years.

Most of the changes discussed above describe things that are happening at the college level.  At the same time, comparable changes are being implemented much more widely across the secondary curriculum as the NCTM (National Council of Teachers of Mathematics) Standards become more widely adopted and as the textbook cycle in the high schools runs its course, so traditional texts can be replaced with more modern reform texts.  Thus, the colleges should expect to see increasing numbers of students coming into our courses with very different mathematics experiences and proficiency than we have traditionally expected. Students will have less formal algebra, but a greater emphasis on conceptual understanding and multiple representations of those concepts; consistent exposure to the use of technology, almost entirely in the form of graphing calculators;  more experience in writing and communicating mathematics;  more experience with extended, realistic applications of the mathematics; more experience in learning in non-traditional classroom settings and with more varied methods of assessment used.  

Just as significantly, calculators such as the TI-89 with its CAS capabilities are now allowed on virtually all standardized tests, including the AP Calculus exam and the SAT (Scholastic Aptitude Test) that is the most widely used test for determining college admission in the U.S.  It is therefore reasonable to expect that mathematics teachers in any school district that can afford to buy such calculators for their students or can ask the parents to buy such machines will do so, because it will provide an additional “edge” for those kids over the ones who are only using a more traditional graphing calculator such as the TI-83.  In turn, we should therefore expect more and more students to arrive in colleges who have used CAS technology (and many who therefore already own it themselves).  For better or worse, they will have become dependent on CAS.  

This in turn will put ever increasing pressures on those college faculty who have been resistant to curriculum reform in the hope that it will either fade away or that they can hold it off long enough until retirement.  (Admittedly, there are also those who have resisted on philosophical grounds.)  As a profession, we in mathematics have been used to a seamless transition between high school and college mathematics because we all offered the same courses in the same spirit and we all had been through those courses ourselves as students.  The reform efforts at all levels are creating a very different, though equally seamless, transition between high school and college.  But in the process, we should all expect a lot of bumps as the pieces rub against each other to generate the kind of perfect fit that we would like.  

What is clear also is that the mathematics students coming out of this new curriculum model will be very different from the traditional type of mathematician.  Where we turn first to pencil and paper for almost any mathematics problem, these students will naturally turn first to some kind of graphical tool to investigate what a process looks like or whether an idea makes sense.  They will turn to the algebraic techniques only if there is a need to continue or for general verification. Moreover, they will perform much of that algebra using CAS technology rather than pencil and paper.  And, as this trend continues, we may well be on the road toward the kind of future Isaac Asimov envisioned.  At the same time, certainly, the next generation will not be clones of ourselves; they will bring a very different vision to mathematics and related areas.

But what of these relatively few people – the math and physics majors or those computer science majors who may be called on to program future generations of Mathematica –  who  will need the full array of symbolic operations?  It seems unreasonable to subject everyone to learning those skills, particularly as prerequisite skills to courses that may no longer require them.  We have seen that this doesn't work well for the overwhelming majority of students when such skills were essential.  Now that the algebraic skills are less necessary for success in calculus and other courses both inside and outside mathematics, there is little reason to subject most students to them.

Somewhat facetiously, it may not be unreasonable to look forward to the day in the not-too-distant future when some of the large research universities will begin offering junior level courses in advanced manipulative algebra for the few who need it while the overwhelming majority have been exposed to more fundamental mathematical reasoning, mathematical ideas, and realistic applications long before.
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Figure 1  U.S. Population vs. years since 1780
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Figure 2  log of U.S. Population vs. years since 1780
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Figure 3  U.S. Population vs. years since 1780 with exponential function superimposed.
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Figure 4  U.S. Population (in millions) from 1780 through 2000.
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