An Individualized Student Term Project for Multivariate Calculus

Sheldon P. Gordon

Department of Mathematics

Farmingdale State University of New York

Farmingdale, NY 11735

gordonsp@farmingdale.edu

Abstract In this article, the author describes an individualized term project that is designed to increase student understanding of some of the major concepts and methods in multivariate calculus. The project involves having each student conduct a complete max-min analysis of a third degree polynomial in x and y that is based on his or her social security number and that requires the use of a variety of technological tools.
Keywords Multivariate calculus, student project, max-min analysis, surface plots, contour diagrams

Biographical Sketch Sheldon Gordon is Professor of Mathematics at SUNY Farmingdale. He is a member of a number of national committees involved in undergraduate mathematics education and is leading a national initiative to refocus the courses below calculus. He is the principal author of Functioning in the Real World and a co-author of the texts developed under the Harvard Calculus Consortium.

For many years, I have had the students in almost all of my classes conduct a number of individualized projects that require them to develop a deep understanding of the concepts and methods of the course. The resulting project reports then “count” considerably toward their final grade – typically as the equivalent of one or perhaps even two class tests. However, until very recently, I have been less than satisfied with my ideas for similar projects in multivariate calculus. In this article, I will discuss the project assignment that I have used during the last few semesters that fully meets my goals of having the students develop that deep level of understanding.

The project involves a complete max-min analysis of a polynomial in x and y that is based on each student’s social security polynomial, so that each student has his or her own function to work with. The students can certainly help one another, but in the final analysis, each one will have to do the work personally. Thus, if a student’s social security number is 123-45-6789, then he or she would study the behavior of the cubic polynomi​alADVANCE \d 2

P(x, y) = 1x3 - 2x2y + 3xy2 - 4y3 + 5x2 - 6y2 + 7xy - 8x + 9y.
(The alternating signs are used to create a little more “action”.) In particular, for their own polynomial, each student must locate all critical points for the function and determine whether they corre​spond to a maximum, a minimum or a saddle point, by applying a variety of graphical, analytic, and numerical tools. In the following, we will discuss each of the four distinct activities (they are shown in italics below) that are required of the students to complete this project and see what each activity entails based on this particular polynomial.

Activity #1. Include a variety of surface plots with different views (using Derive [1] or another package) and contour plots with different windows (using DPlot [2] or MPP [4]) to provide a good picture of the behavior of your function. Label each figure and refer to it in your write-up as you discuss the behavior of the function and the kinds of critical points you apparently observe. (If you have fewer than two critical points, change the signs in your function to get more action.) Zoom in sufficiently so that you can estimate the coordinates of each of the critical points. Explain your reasoning as you go.

[image: image1.wmf][image: image2.wmf]
Figure 1.

We begin with a surface plot of the specific polynomial P(x, y) using the window [-10,10] ([-10, 10] ([0, 10], as shown in Figure 1 (produced by Derive). This view suggests, if anything, a shape like a vertical shower curtain with one fold and the complete absence of any critical points. After considerable experimentation by zooming out and changing the viewpoint by rotating the surface, we finally end up with the two views in Figure 2. They suggest a clear minimum point roughly near x = 0 and y = -1, perhaps, and a saddle point roughly around x = 1 and y = 1. We note that in precalculus and calculus, when examining the graphs of functions of a single variable, it is certainly an important learning experience for students to come to grips with the need to look at a variety of different windows in order to gain a solid understanding of the overall behavior of the function. This kind of learning experience is, if anything, far more important for students in multivariate calculus when attempting to understand the behavior of surfaces in space for several reasons:

1. functions of two (or more variables) can have far more complicated behavior patterns than curves in the plane;

2. it is not just the viewing window, but also the position of one’s perspective that is critical in obtaining an informative view of a surface;
3. it is usually necessary to obtain a variety of good images to understand the behavior; rarely is a single view sufficient;

4. students typically have very poor visualization skills in three dimensions.

[image: image3.wmf][image: image4.wmf]
Figure 2.

However, it is very difficult to obtain any reasonably accurate estimate of the coordinates of these critical points from the surface plots. To attempt to do so requires zooming in on the surface near the desired points and, as we do this, it typically becomes harder and harder to identify the critical points on the screen. This is one of the major disadvantages of using surface plots.

[image: image5.wmf]
Figure 3.

Instead of focusing on the surface plots, we consider contour diagrams for the function. The one shown in Figure 3 (produced by DPlot), using the window [-4 4] ([-4, 4] for x and y, immediately suggests the presence of a maximum or minimum point and the potential presence of a saddle point. Examining the contours about the first point, we observe that they decrease in height, so that the first critical point clearly corresponds to a minimum. From the contour diagram, we might estimate that the minimum occurs near x (0.7 and y (-1.5. If we use the “crosshairs” feature of DPlot, we can get more accurate estimates of the coordinates of the critical point at x (0.6463878, y (-1.368821, z (17.4805. Alternatively, we can repeatedly zoom in on the contour diagram about this point and find that the same estimates are achieved. Incidentally, note the behavior in the contour diagrams – the fact that the contours are widely separated near the critical point is what we expect because the function is flattening out there as it approaches its minimum.

[image: image6.wmf]
Figure 4.

When we zoom in on the second point, as shown in Figure 4, our suspicions about there being a saddle point there are confirmed by the behavior of the contours – in two directions (left and right), the values for the contours increase and in the other two directions (up and down), the values decrease. That is, to the left of the point, Px < 0 and to the right, Px > 0; similarly, above the point, Py > 0, and below it, Py < 0 Moreover, by zooming in repeatedly, we can estimate the location of the saddle point with reasonably high accuracy. In particular, the saddle point appears to be near x (0.3269962 and y (0.6387833, where z (1.916677 (again using the crosshairs feature rather than an estimate based on the contour values directly).

Activity #2. For each of your critical points, perform two iterations of the Newton-Raphson method, starting at your estimates in #1. Discuss the level of accuracy after each iteration and discuss the apparent speed of convergence.

One of the most effective, elementary root-finding methods to solve the equation f(x) = 0 is Newton’s Method, which is based on the iterative process

[image: image7.wmf]()

1

'()

,

n

n

fx

nn

fx

xx

+

=-

starting with an initial estimate x0. To locate the critical points of a function f(x, y) of two variables, we have to solve the system of two non-linear equations in two unknowns fx(x, y) = 0 and fy(x, y) = 0. In all but the simplest possible cases, one cannot expect to obtain closed-form solutions for such a system. Instead, it is almost always necessary to resort to numerical methods to estimate the solutions. A generalization of Newton’s method, known as the Newton-Raphson method [3], is a very effective procedure for locating the common solution to virtually any system of two non-linear equations in two unknowns
F(x, y) = 0 and G(x, y) = 0.
(In fact, several of my students found from reading the instruction manual that comes with Mathematica that the Newton-Raphson method is the method built into Mathematica for solving systems of nonlinear equations numerically.)
In the present case with the polynomial P (x, y) the students need to find the common solutions to the system Px(x, y) = 0 and Py(x, y) = 0, so that F = Px and G = Py. You can picture this in one of two ways. First, from the point of view of surfaces in space, we are looking for the point(s) in the x-y plane where the two surfaces for F and G intersect. From the point of view of contour plots, we are looking for the point(s) of intersection of the 0-contours of F and G; this is equivalent to finding the point(s) of intersection of the two implicit curves F(x, y) = 0 and G(x, y) = 0.

The Newton-Raphson method is based on the following procedure. Suppose that (x0, y0) is an initial estimate of the desired point (x, y) where F(x, y) = 0 and G(x, y) = 0. The idea is to determine estimates of (x and (y, the horizontal and vertical distances needed to move from the initial point (x0, y0) to (x, y). However, since all we can do is approximate the desired values, the best that we obtain is a better approximation, (x1, y1), to the desired point (x, y), followed by a further approximation (x2 y2), and so on, as illustrated in Figure 5. To obtain these approximations, we assume that
x = x0 + (x and y = y0 + (y.

[image: image8.wmf](,)

xy

00

(,)

xy

11

(,)

xy

22

D

x

D

y

Figure 5
Using the local linearizations of both functions F and G, we have

F(x, y) (F(x0, y0) + Fx(x0, y0) (x + Fy(x0, y0) (y

 G(x, y) (G(x0, y0) + Gx(x0, y0) (x + Gy(x0, y0) (y .

For the “right” values of (x and (y, both of the above expressions would be zero and so we are led to the two linear equations in the two unknowns (x and (y

Fx(x0, y0) (x + Fy(x0, y0) (y = - F(x0, y0)

Gx(x0, y0) (x + Gy(x0, y0) (y = - G(x0, y0) .

The solution of this system gives us the next iterate

x1 = x0 + (x and y1 = y0 + (y

in the sequence of estimates, and this sequence converges quadratically to a desired solution – that is, each successive iterate roughly doubles the number of correct decimal places.
As with Newton’s method for a function of one variable, there are some possible complications – the sequence of iterates might diverge or it might converge to a point other than the one near the starting point. For instance, if the tangent plane to the surface at some iterate (xn, yn) is very flat, then the tangent plane will not intersect the x-y plane anywhere near (xn, yn) and so the subsequent iterate will be far away. However, these problems tend not to arise with the kind of function that occurs in this situation, especially if the original estimates used are fairly accurate.

For example, using our initial estimate x0 = 0.7 and y0 = -1.5 for the location of the minimum point, we need to solve the system

Pxx(x0, y0) (x + Pxy(x0, y0) (y = - Px(x0, y0)

Pyx(x0, y0) (x + Pyy(x0, y0) (y = - Py(x0, y0)

or

20.2 (x - 4.8 (y = - (0.92)

-4.8 (x + 28.2 (y = - (-2.38).

The corresponding solution is (x = -0.0265642 and (y = 0.0798756. Consequently, the next approximation to the location of the critical point is

x1 = x0 + (x = 0.673459 and y1 = y0 + (y = -1.4201244

The following iterate turns out to be

 x2 = x1 + (x = 0.6726422 and y2 = y1 + (y = -1.4167803

and so forth. A numerical implementation of this method produces the results shown in the following table to illustrate the speed of convergence once a reasonably accurate starting point is found. Observe that, once the first decimal place is determined, each successive iteration provides approximately twice as many significant digits.

	x
	y

	0.7
	-1.5

	0.6734358
	-1.420124

	0.6726423
	-1.416780

	0.6726410
	-1.416775

	0.6726410
	-1.416775

Incidentally, notice that the values obtained here are quite different from the estimates made using the crosshairs approach with the contour diagram.

Activity #3. Use Derive (or a similar package) to find the partial derivatives, to solve for one variable in terms of the other algebraically (if possible), and to plot the resulting functions simultaneously on the same axes. Include at least one such graph in the report and indicate the location of the critical points on it. Then use Derive (or a similar package) to solve the system of nonlinear equations resulting from setting the respective partial derivatives to zero, both algebraically, if possible, and numerically. Discuss how the results compare to what you estimated in Activity #1 and calculated in Activity #2. Include print-outs of both the graphs and the algebra pages.

For the cubic polynomials used in this project, the partial derivatives Px and Py are simple to find by hand. In fact, each will always be quadratic functions of x and y. As a result, each of the 0-contours will be a conic section. In virtually every report turned in by my students, one of the contours was an ellipse and the other a hyperbola, though this certainly does not mean that a pair of ellipses or a pair of hyperbolas will not occur. Getting a parabola would be very surprising – a student’s social security number would have to include an unreasonable number of well-placed zeros. In any event, in most cases there will be either two or four or possibly no points of intersection. In the case of no intersection points, the students will have observed, either from the surface plot or the original contour diagram, that there are no critical points and I suggest that they change the signs in the terms in the original polynomial to create the extra action mentioned before.

The problem that arises is that it is usually extremely difficult to find the common solution of the nonlinear system Px(x, y) = 0 and Py (x, y) = 0. For the case of the prototype function given at the beginning of this article, the equations to be solved algebraically are

Px = 3x2 – 4xy + 3y2 + 10x + 7y - 8 = 0

Py = -2x2 + 6xy -12y2 - 12y + 7x + 9 = 0.

The corresponding graphs – an ellipse and a hyperbola – are shown in Figure 7, where we see that there are precisely two points of intersection.

[image: image9.wmf]

Using Derive to solve for y in terms of x for the first equation, we obtain

[image: image10.wmf]
Each of the two expressions represents a branch of the curve. Similarly, for the second equation, we get

[image: image11.wmf]
Again, there are two branches. Using the solve command, Derive gives

[image: image12.png]2 L 2 L
APPROX(SOLUE(3-x — 4-x'y + 3-y +18-x + 7.y - 8 = — 2:x + 6-x'y - 12y - 12-y + 2x + 9 = 8, [x. y]. Real))

(x = 8.6726410223 A y = ~1.416774713) v (x = B.2990086575 ~ y = 0.6189534983)

Notice that the coordinates of both of these points are very close to the values estimated using the Newton-Raphson method.

Activity #4. Test each of the critical points you find using the Second Derivative Test and report on your findings. Do they agree with what you decided in Activity #1?

This step is routine, other than the complexity of the function and the complexity of the estimates of the solutions, so we do not bother to carry it out here.

Student Reactions and Performance

The student reactions to this project were extremely positive. There was a high degree of enthusiasm throughout, accompanied by many questions both in and outside of class. The nature of the questions and the resulting discussions indicated that the project had helped dramatically in getting most of the students to develop many solid connections between the various concepts and methods involved. Most of the students also developed a high degree of confidence in their ability to use a variety of software packages.

As for the actual reports submitted, most were extremely good. Some were truly outstanding and could be termed professional quality. In these reports, most of the students clearly demonstrated an extremely deep level of understanding of the mathematics to an extent that I probably have never before observed in multivariable calculus. Moreover, the experiences gained in doing this project also seemed to carry over to their understanding of other topics, such as the gradient vector and the directional derivative. I can only ascribe this to their being forced to look at and think deeply about the contour diagrams and the surface plots in order to satisfy the project requirements. Furthermore, there seemed to be a generally higher level of performance on conceptual problems on all class tests and the final exam.

Finally, at the end of each semester, students from different courses are invited to make presentations based on projects they have conducted before the faculty and members of the school’s math club. A number of the students from my multivariate calculus class gave such presentations based on this project assignment. In each case, the other members of the mathematics department were stunned by the level and quality of work that these students had done. As I indicated above, the work of these students is of professional caliber.
Acknowledgments

The work described in this article was supported by the Division of Undergraduate Education of the National Science Foundation under grants DUE-0089400 and DUE-0310123. However, the views expressed are not necessarily those of either the Foundation or the project. The author is also indebted to Juan Gutierrez, a student at Farmingdale State University, for producing all of the figures and the computations used in this article.

References
1. Derive software package, (produces surface plots, but not contour diagrams). Texas Instruments, TX.

2. DPlot (produces high quality contour plots), www.dplot.com.
3. Henrici, Peter, Elements of Numerical Analysis, John Wiley and Sons, New York, 1964.

4. MPP (Midshipman’s Plotting Package), (DOS-based public domain software), Howard Penn, U.S. Naval Academy, MD.

Minimum Point

Saddle Point

Minimum Point

Saddle Point

_1132564892.unknown

_1125908038.unknown

