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Over the years, the field of numerical analysis has developed outside of the mainstream of mathematics.  In the process, many numerical techniques were discovered and subsequently discarded in favor of more sophisticated and more accurate algorithms.  As a result, the majority of the mathematics community is not even aware of the existence of most of these techniques.  From a pedagogical point of view, this is extremely unfortunate since some of the topics which have been relegated to oblivion can serve to bring important new and valuable insights into traditional math courses, especially the calculus.  The first author has described one such topic, a three dimensional form of the Trapezoid Rule, in [3].

One topic which has always been of paramount importance in numer-ical analysis is that of approximating the roots of equations, be they algebraic or transcendental.  Probably the best known and most widely used elementary algorithm is Newton's Method which approxi-mates a portion of a curve by its tangent line.  In a recent paper, Alefeld [1] described one extension of Newton's Method, known as Halley's method, where the curve is approximated by a sequence of tangential hyperbolas.  In the present paper, the authors consider a different and probably more natural extension of Newton's Method where the curve is approximated by a sequence of parabolas.  We note that a different approach to doing this based on interpolation methods, known as Muller's Method (see [2]), has proven very suc-cessful in recent years.


We begin by briefly reviewing the geometric interpretation of Newton's Method which generates a succession of tangent lines to the curve  y = f(x), as shown in Figure l.  The resulting iterates are given by




x1 = x - f(x)/f'(x)   .

This sequence converges to a root of f(x) = 0 under a variety of relatively simple sets of conditions given in virtually any text-book on numerical analysis.  Moreover, the convergence to the root is quadratic:  that is, the error at each stage is proportional to the square of the error at the previous stage.  As a consequence, each successive iteration will approximately double the number of correct decimal places once the first decimal has been determined.

The principal difficulty in using Newton's Method arises when f'(x) is zero (or nearly so).  Geometrically, the tangent line so con-structed would be (nearly) horizontal.  As a result, there would be no further iterate if f'(x) = 0 or the next approximation would be very far from the root if f'(x) is close to zero.  In the latter situation, the method could then diverge or converge to some other root.  A further difficulty occurs when the second and higher deri-vatives of f(x) are large near the root in question.


Our present approach involves the use of a quadratic approxi-mation to the given function.  In particular, suppose that x repre-sents some (initial) approximation to a root of f(x) = 0.  We con-sider the point (x,f(x)) and construct the parabola which best fits the curve at this point.  This involves matching the functional value f(x), the slope f'(x) and the curvature given in terms of f"(x).  Thus, the desired quadratic is precisely the second degree Taylor polynomial



p(X) = f(x) + f'(x) (X-x) + f"(x) (X-x)2/2  .

The desired root of the function should then be located near a root of the quadratic and we therefore obtain


X-x = - f'(x) + √ f'(x)² - 2 f(x) f"(x)
                        f"(x)

so that



X = x + f'(x) + √ f'(x)² - 2 f(x) f"(x)
                            f"(x)

Furthermore, according to Taylor's Theorem, the error involved in the approximation, X - x, is proportional to the third power of (X-x);  the convergence is therefore cubic and hence is far faster than the convergence with Newton's method.

     Clearly, in order to use this technique, it is necessary to have f"(x) non-zero.  In a sense, this is a trade-off for the condition that f'(x) be non-zero with Newton's Method.  As a matter of fact, the consequences are quite similar.  If f"(x) is nearly zero at a particular point, then the corresponding parabola will be extremely flat and the resulting zeros will be quite distant.


A further complication seemingly occurs due to the two possi-ble roots for the quadratic in the above formula.  A pragmatic approach which has worked well in all examples tried by the authors is to select the sign opposite to that of -f'(x).  This assures that the adjustment term is forced to zero as rapidly as possible and so leads to a rapid rate of convergence.  We note that if this method is to be used, it would be implemented on a computer and there is no difficulty in programming this choice for the sign at each iteration.


We can also handle this problem by an alternative method as follows.  Provided that f'(x) is non-zero, we can perform some simplification in equation (1) to obtain


X = x + -1 + √ 1 - 2 f(x)/f'(x)  f"(x)/f'(x)
                        f"(x)/f'(x)

where the positive square root is taken to force X-x to zero.  If we now rationalize the numerator to prevent the development of differencing errors, we obtain

 
X = x -  -                  2 f(x)/f'(x)                      -

                         1 +   1 - 2 f(x)/f'(x)  f"(x)/f'(x)

Before proceeding, it is interesting to compare this formula with the one for Halley's Method, which gives

.X = x -*  -          f(x)                -

                       f'(x) - (1/2)f"(x) f(x)/f'(x)

This result can be obtained by applying Newton's Method to the function g(x) = f(x)/ f'(x) and is a worthwhile exercise.  Since the formula comes from Newton's Method, error estimates can be obtained automatically from the standard Newton results, but are quite difficult since they apply to the function g(x).


Halley's formula can also be derived from the parabolic formu-la (2) by approximating the square root by the first two terms of its binomial expansion, namely



1 + f(x)/f'(x)  f"(x)/f'(x)   .

A still open question is the possibility of obtaining the parabolic formula directly from Newton's Method by an appropriate choice of function g(x).


To illustrate the relative rates of convergence between the various methods, we apply the parabolic method, Halley's Method and Newton's Method to the function f(x) = x*3. - 10 using several dif-ferent initial values.  For example, if the initial estimate is x = l.5, then the root 2.15443 is found in 4 iterations using either the parabolic or Halley's Method and in 6 steps using Newton's Method.  Alternatively, if the initial value is x = .4, then the parabolic method reaches the same root in 5 iterations;  Halley's Method requires 6 steps and Newton's Method takes 12 iterations.  However, if we were to try x = 4 as the initial estimate, then the parabolic method -apparently- breaks down since, in equation (1), the argument for the square root is -288.


In fact, though, the parabolic method breaks down in the above case only if we restrict our attention to real roots of the func-tion and utilize only real arithmetic.  On the other hand, if we use complex arithmetic, then the parabolic method will produce a sequence of complex numbers which converge to a complex root of the function.  This can easily be implemented on a computer using the FORTRAN language which allows for complex arithmetic operations.


To see the effects, we consider the function f(x) = x7 - x3 - 5.  If we use the initial value x = 1 + 0i, then we obtain the following output:

         1.000000        0.000000

         1.427520        0.000000

         1.325405        0.000000

         1.329737        0.000000

which is a real root of the function.  Alternatively, if we start with x = 5 + 5i, then we obtain

5.000000        5.000000

3.462107        4.871042

2.198640        4.547l91

    .                .

-0.235657        1.283314      (12 iterations)

The number -0.235657 + 1.283314 is a complex root of this polyno-mial, as is its complex conjugate.  Similarly, if the initial esti-mate x = 2i is used, then the method converges to the same root in 5 steps.


Thus, rather than being a drawback, the concern over the sign of the argument in the square root actually leads to an exceptually useful tool to generate the complex roots of a function at an extremely rapid rate of convergence.


A considerably more interesting example is provided by the function sin(x*2. + 10), a part of whose graph is shown in Figure 2.  Clearly, this function has a root for any value of x such that x² + 10  is a multiple of π,  nπ.  For any n < 4, the roots are real.  Therefore, presumably for any real initial value xo = 1.60, say, there will be convergence to some real root.  The following table lists a few such results of applying the method.  The first ordered pair is the initial complex point;  the second is the root to which the sequence converges:

    (1,0)     (1.601989,0)

    (2,0)     (1.601989,0)

    (3,0)     (2.974820,0)

    (4,0)     (3.890082,0)

    (5,0)     (4.955554,0)

    (6,0)     (6.092937,0)

    (10,0)    (9.997781,0)

In each case, the method requires no more than three iterations to reach the limit.  We note that each of these solutions corresponds to one of the multiples of π.

  However, if n > 3, then the roots will be complex.  Again, we apply the parabolic method with a variety of initial complex points and obtain the results below:

    (.9,0)    (0,  .758433)

    (.8,0)    (0,  .758433)

    (.7,0)    (0,  .758433)

    (.6,0)    (1.601989, 0)

    (.5,0)    (0,  .758433)

       .            .

    ( 0,0)    (0,  .758433)

       .            .

    (-.5,0)   (0,  .758433)

On the other hand, if we start with purely imaginary initial values, we get the following set of results:

    (0,1)     (0,  .758433)

    (0,2)     (0, 1.927904)

    (0,3)     (0, 3.162276)

    (0,4)     (0, 4.035242)

    (0,10)    (0,10.055150)

It is worth noting that each of these imaginary roots corresponds to a value of n less than 4.


The above results may suggest that whenever the parabolic method is applied starting from a non-real initial value, it will converge to a non-real root of the function.  This is not neces-sarily the case, as may be seen from the following results:

    (1,1)     (0,   .758433)

    (2,2)     (0,  2.618855)

    (3,3)     (3.890082,  0)

    (6,6)     (8.086908,  0)

In the last two cases, however, the rate of convergence was considerably slower.  It took 20 iterations to obtain the root starting from (3,3) and over 40 to converge from (6,6).


Possibly the most fascinating aspect of this example is that there seems to be no predictable pattern in terms of whether the method will converge to a real or an imaginary root.  Even with a finer subdivision than the one illustrated in the tables above, the method can converge either way.
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