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On Finding The General Term
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Using Lagrange Interpolation(1)

We are all familiar with the story of Gauss' teacher who assigned the class the makework chore of summing one through 100 only to be pestered in moments by Gauss who presented not only the correct answer, 5050, but also the general formula for the sum of the first n integers.  Unfortunately, few of us are blessed with such insight (let alone with students of such a caliber).  Therefore, whenever we encounter a similar problem involving finding the general term for a sequence, we are far more likely to apply Edison's prescription of 2% inspiration mixed in with 98% perspiration.


In the present article, we will consider an effective method for determining the general terms of certain sequences.  This technique involves little, if any, effort, especially if appropriate computer software is available.  The sole limitation on the method is that it requires the general term to be of purely polynomial form with rational coefficients.  


We will illustrate the approaches with two examples.  The first involves finding a formula for 






 n   5



          Σ    k                  (1)





      k=0

The terms of this sequence are S0 = 05 = 0, S1 = 05 + 15 = 1, S2 = 33, S3 = 276, ...  The second example involves finding an expression for the general term in the sequence


   1, 8, 35, 112, 294, 672, 1386, 2640, 4719 ...       (2)

for n = 6, 8, 10, ... which is adapted from a problem which arose in a separate investigation (Gordon, 1991) involving the patterns in the coefficients when cos nΘ is expanded.  We should anticipate that the formula for the summation (1) will involve a polynomial of degree 6 in n.  (In general, the formula for Σ kp is always a polynomial of degree p+1;  see Paul (1985) and its references.)  Alternatively, we might notice that the sequence of partial sums satisfies the difference equation


Sn+1 = Sn + (n+1)5
and so the rules for applying the discrete formulation of the method of underdetermined coefficients would also indicate using a sixth degree polynomial.  As for the sequence (2), we would probably have little feel, if any, for what the pattern should turn out to be.


Lagrange Interpolating Polynomials

Our suggested approach is based on the use of the Lagrange interpolating polynomial of degree n,





   n




Pn (x)  =  Σ    f(xk) Lk(x)



   

  k=0     

where

Lk(x)  =    (x - x0)(x - x1) ... (x - xk-1)(x - xk+1) ... (x -xn)


     _____________________________________________________


     (xk - x0)(xk - x1) ... (xk - xk-1)(xk - xk+1) ... (xk - xn)


       n


  =  π      (x - xj) 

 



  j=0   (xk - xj)



   j=k

Notice that Lk(xk) = 1 for any k = 0, 1, ..., n since all factors cancel out.  Further, if j = k, then Lk(xj) = 0 since Lk(x) contains the factor (x - xj).  Therefore, Pm(xk) = f(xk) Lk(xk) = f(xk) for each k.  Thus, Pm(x) is a linear combination of n+1 polynomials of degree n which passes through each of the n+1 points (x0,y0), (x1, y1), ..., (xn, yn).    


To apply this to the problem of finding the general term of a sequence, we simply use the indices 0, 1, 2, 3, ..., n as the x-values and we use either the partial sums 


0, 1,  1 + 25 = 33,  1 + 25 + 35 = 276, ...

of the series (1) or the actual terms of the sequence in (2) as the y-values.  Working the first example by hand using the first 7 terms, 



 x    0   1   2    3   ...     6  


 y    0   1   33  276        12201

we obtain as the Lagrange interpolating polynomial


P6(x)  =  0 (x - 1)(x - 2)(x - 3) ... (x - 6)



  (0 - 1)(0 - 2)(0 - 3) ... (0 - 6)




+ 1 (x - 0)(x - 2)(x - 3) ... (x - 6)



    (1 - 0)(1 - 2)(1 - 3) ... (1 - 6)




+  33 (x - 0)(x - 1)(x - 3) ... (x - 6)



      (2 - 0)(2 - 1)(2 - 3) ... (2 - 6)




+  ... + 12201 (x - 0)(x - 1)(x - 3) ... (x - 5)



      

(6 - 0)(6 - 1)(6 - 5) ... (6 - 5)

which is a polynomial of degree 6.


Using a computer program (written by Sheldon Gordon) which calculates, graphs and displays the formula for the Lagrange interpolating polynomial through any desired set of points (a similar function is available through the MathCad package) , we find (within seconds) that the corresponding polynomial is:



0.166666 x6 + 0.5 x5 + 0.416666 x4 - 0.083333 x2
for the partial sums.  We first consider how to deal with this expression.  To begin, we observe that the lead coefficient 0.166666 is essentially 1/6 and we therefore factor it out of the polynomial to obtain, after some judicious rounding,



(x6  + 3x5  + 2.5x4  - .5x2 )/6




= (1/6)x6 + (1/2)x5 + (5/12)x4 - (1/12)x2



= x2 (2x4 + 6x3 + 5x2 - 1)/12 .

In terms of n, this yields



   n



Σ k=0  k5   =  n2 (2n4 + 6n3 + 5n2 - 1)/12 .

This factors as 



   n



Σ k=0 k5  =  n2 (n + 1)2 (2n2 + n - 1)/12  

to yield the general formula for the sum of the fifth powers.  Once such a formula is produced, we can prove it using the standard type of induction argument.


In a similar way, we consider the sequence of numbers in (2) as input to the same program in the form (6,1), (8,8), (10,35), ...  and so obtain the polynomial



0.000043403 x6 - 0.00086806 x4 + 0.00277777 x2 .

We might be tempted to expect that the polynomial has rational coefficients.  As such, based on our experience above, we might consider the multiplicative inverse, 23039.88, of the lead coefficient, so that the lead coefficient is essentially 1/23040.  Using this, the polynomial factors as

  (x6 - 20x4 + 64x2)/23040 = x2 (x2 - 4)(x2 - 16)/23040      (3)

after some judicious rounding to undo the effects of the computer's initial roundings.  Thus, in terms of n, we find that the general term for the sequence is 



n2 (n2  - 4)(n2  - 16)/23040       n = 6, 8, 10, .... 

It is simple to verify that this is indeed correct for the data values given.


We note that one characteristic of the Lagrange interpolating polynomial is that if a polynomial of degree less than m fits the given m+1 points, then the formula automatically "collapses" to produce that lower degree polynomial.  This is precisely what occurred in the second example above where we used 9 points which we would expect to lead to an eighth degree polynomial.  Thus, in trying to determine a polynomial relationship that fits a set of data values, it might seem that the best strategy is to use all the values available.  However, that approach could be misleading.  That is, if we have seven data points available and use all of them, then the Lagrange method will produce a polynomial of degree six (or less) that passes through all of the points.  It is conceivable, though, that the actual pattern might be described by, say, a tenth degree polynomial (or no polynomial at all) and we would have no way of checking if the result is correct.  Consequently, a more intelligent approach might be to use one less than the maximum number of known points, find the corresponding interpolating polynomial, and then check that the remaining point fits it as well.  If it does, it provides a good indication that the result is correct.  If the last point does not fit, then we can use all of the points, obtain the maximum interpolating polynomial based on the data, and hope that it is correct, pending obtaining additional data values.  


To illustrate the potential pitfalls in making too definitive a decision, consider the sequence:



0, 0, 0, ..., 0, 10P0, 11P1, 12P2, ...

for n ≥ 1 whose first 10 terms are zero and whose subsequent terms are given by mPr, the number of permutations of m objects taken r at a time.  Based on the first six or eight terms only, we would likely conclude that the sequence is identically zero.  However, if the later terms are also noticed, then the pattern is radically different and, in fact, is given by


(n-1)(n-2)AAA (n-10)

for all n.


We note that if less than nine decimal accuracy is used for the coefficients in example 2, we might well miss the fact that the lead coefficient is 1/23040.  In turn, this would distort the judiciously rounded values for the other coefficients when the lead term was factored out.  We can circumvent this potential problem by factoring out the lead decimal coefficient and then assuming that



p(x) = (A/B)(x6  - 20.0000000 x4  + 63.99965440 x 2 )

and then substituting in any of the points, say (6,1), to determine algebraically the ratio A/B as a fraction.  


Using Derive to Determine the Polynomial

Alternatively, it is possible to apply some of the common computer algebra systems to perform some of this work in rational form.  To illustrate this, suppose we apply Derive.  We first write the Lagrange interpolating polynomial as



  n         k-1


  n



Σ   yk  π     (x - vj)      π    (x -vj)


 k=1

  j=1  (vk - vj)    j=k+1 (vk - vj)

where vk = xk and yk = f(xk), for each k.  We construct this formula in Derive in several steps using the Author command.  First, we must declare V and Y to be vectors of dimension N.  Then Author 



ELEMENT (Y, K)

which becomes Expression #1.  Next, Author


PRODUCT ((X - ELEMENT(V,J))/





(ELEMENT (V,K)-ELEMENT (V,J)),J,1,K-1)

which becomes Expression #2.  Then Author


PRODUCT ((X - ELEMENT(V,J))/





(ELEMENT (V,K)-ELEMENT (V,J)),J,K+1,N)

which becomes Expression #3.  Finally, Author



SUM(#1 #2 #3, K, 1, N)

which becomes Expression #4 and is identical to the above formula for the Lagrange interpolating polynomial.


This provides a simple, one-line formula for the interpolating polynomial in Derive.  To use it in the particular case we considered above for the sum of the fifth powers of the integers, we use the Manage-Substitute option to make the following substitutions:



7 FOR N



[0,1,2,3,4,5,6]  FOR V



[0,1,33,276,1300,4425,12201] FOR Y

Upon using the Simplify command, we get precisely the expression obtained previously for the general term of the sum in exact form.


Advantages of Using Interpolating Polynomials

Finally, we note that if we assume the final result is a polynomial of degree n in x and so consider 


Pn (x) = a0 xn  + a1 xn-1  + ... + an
where the coefficients are to be determined.  We substitute pairs of data values -- x  = 1, y  = ... , and so forth into the polynomial to obtain a set of n+1 equations in the n+1 unknowns.  The resulting system can be solved using standard linear algebra methods, such as Gaussian elimination, using appropriate software, preferably a package which performs the operations using rational arithmetic to avoid the rounding problems inherent in floating point arithmetic. 


Despite the wider availability of linear algebra software packages, the authors' preference is the interpolation approach.  It involves considerably less typing.  (Compare the need to input a 7 x 8 matrix instead of just seven pairs of points.)  Second, it is faster, particularly if we want to experiment with different sets of points.  Last, and perhaps most important, it seems less sensitive to successive rounding errors caused by the large range of values used by the data in such a problem when using programs based on floating point arithmetic.  In fact, this is pointed out in many texts on numerical analysis.  See, for example, Gerald and Wheatley (1988, p183).  


Interested readers should contact Sheldon Gordon for information on the availability of the Lagrange Interpolating Polynomial program used above.
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