 SEQ CHAPTER \h \r 1
On Symmetries of Polynomials

During a recent class at the college algebra level, while leading the class to discover and enumerate the behavioral characteristics of cubic polynomials, I was stunned to get the following question: “Is it true that every cubic is centered at its point of inflection?”  Seeking to draw the student out more, I asked her “What do you mean by that?”  With her eyes screwed up as she was trying to visualize her image and with her hands moving in opposing directions, Vicki responded “Well, if you start at the point of inflection and move in both directions, don’t you trace out the same path?”  Sure you do, as we will demonstrate below.  


Everybody knows about the symmetry of parabolas, but relatively few professional mathematicians seem to be aware of the symmetry of cubic polynomials, let alone a student at this level who came into the course with a particularly low self-assessment of her mathematical abilities.  She viewed herself as an “arty” type, certainly not a math student. However, in a college algebra course based on [1], which emphasizes the behavior of functions from the very first day, students’ perception of what mathematics is changes radically and depths of conceptual and geometric insight that are not usually encouraged in more traditional courses can come to the fore.


In the present paper, we will examine the question of symmetry of cubics, as well as higher degree polynomials.

The general cubic polynomial

Let’s begin with the general cubic y = f(x) = ax3 + bx2 + cx + d, which has two (real or complex) critical points.  Since y’ = 3ax2 + 2bx + c, we find that these critical points, which we will call  x1 and x2, occur at
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an expression that is remarkably similar to the quadratic formula for the roots of a quadratic.   (Of course, a, b and c have different meanings here.)   Furthermore, the point of inflection for the cubic occurs when y” = 6ax + 2b = 0, or at


x0 =  -b/3a.

If we compare this to the location of the critical points, we see that the point of inflection of any cubic always occurs midway between the two critical points x1 and x2.  Moreover, by some fairly tedious algebra (a CAS system or a TI 92 is great for this), we can show that


f(x2) - f(x0) = f(x0) - f(x1) =  - [f(x1) - f(x0)],

so that the critical points are indeed skew symmetric with respect to the point of inflection of the cubic.


In fact, for any h, a comparable algebraic exercise shows that


f(x0 + h) -  f(x0) =  - [f(x0 - h) - f(x0) ]  =  f(x0)  -  f(x0 - h). 

Thus, every cubic is skew symmetric about its point of inflection.  See Figure 1.


An immediate consequence of this result is the fact that the first derivative of any cubic is always symmetric about the point of inflection -- that is, by another tedious algebraic exercise (or by a few keystrokes), one can show that


f’(x0 - h) =  f’(x0 + h) ,

for any h.  Alternatively, the derivative of a cubic is a quadratic function and so is symmetric about its vertex, which corresponds to the point of inflection of the cubic.  See Figure 2.


Returning to the original student question that prompted this article, I now intend to incorporate a discussion of this symmetry property of cubics in my college algebra and precalculus courses.  Although I don’t think the time necessary to perform the above algebraic derivation on the board would be time well spent in class and since I don’t like the idea of using the CAS system in a deus ex machina capacity (it’s no different in principal from my simply stating the fact), I feel the following graphical demonstration of the symmetry would be highly effective.  I would start with the basic cubic  f(x) = x3 and use a graphing calculator to draw the graphs of both x3 and -(x)3 to illustrate how, when they are equal, the second graph overwrites the first.  Then, I would use a more general cubic, such as f(x) = x3 - 3x2 +-5x + 9, whose point of inflection occurs at (1,2).  To show the symmetry about this point, it would first be necessary to explain why we want to show that


 f(x0) - f(x0 - x)  =  f(x0)  -  f(x0 + x)

for any value of x.  Then, upon entering the desired cubic into the calculator as y1, say, followed by 2 - y1(x+1) as y2 and y1(-x+1) - 2 as y3, we would see how the third function precisely overwrites the second to demonstrate fairly conclusively to the students that the two expressions are equivalent.  Of course, this would be accompanied by a comment to the effect that a formal proof would require algebraic methods.

The general quartic polynomial

Now let’s see what happens with the general quartic curve, y = g(x) = Ax4 + Bx3 + Cx2 + Dx + E.  We have




g’(x) = 4Ax3  + 3Bx2 + 2Cx + D



g”(x) = 12Ax2 + 6Bx + 2C



g’”(x) = 24Ax + 6B.

Since the first derivative is a cubic, it is skew symmetric about its point of inflection, the point where the third derivative of g is zero, namely at x0 = -B/4A, an expression that is suggestively similar to the location of the vertices of a parabola and the inflection point of a cubic.  Also, the two (real or complex) points of inflection of g’(x) are located at

[image: image2.wmf]Notice that these two values are located at equal distances on either side of x0.  This is also suggestively similar to what happened above with cubics.  In fact, using a CAS system, it is easy to show that if x1 and x2 are the two points of inflection for the quartic, then


g’(x2)  -  g’(x0)  = g’(x02) - g’(x1)

For that matter, for any h,


g’(x0 + h)  -  g’(x0)  =  g’(x0) - g’(x0 - h)

so that the values of the first derivative of any quartic are skew symmetric about the slope value  m0 = g’(x0).  Further, since the second derivative of g is quadratic, we have, for any h,


g”(x0 - h) =   g”(x0 + h), 

so that the second derivative of any quartic is symmetric about the point x0.  


Let’s see what these results mean in terms of the graph of the original quartic curve g.  In Figure 3 we show the graph of a quartic with its derivative function superimposed.  The slope of the tangent line drawn to g at point x0 = - B/4A is  m0; this corresponds to the point (x0,  m0) on the graph of g’.  Suppose we move a distance h to the left and right of this point on g’; in one direction, the value of g’ increases by the same amount as it decreases by in the opposite direction.  The corresponding tangent lines to g are also shown, and their slopes must be interpreted relative to the slope of the tangent line at the “center” point (x0, m0) of g.  Thus, the angles between each tangent line and the direction determined by m0 are the same, but oppositely directed.  For instance, if m0 = 1, say, and the change in the slopes in the two directions is 0.3, say, then one tangent line has a slope of 1.3 while the other has a slope of 0.7.  Unfortunately, it is not particularly simple to see these correlated slopes visually across the entire curve. 


The only time that the correspondence is easily discernible by eye, so that we can actually observe the symmetry in the slopes of the graph of the quartic, is when the slope  m0 at the center point is zero.  We show the graph of such a quartic, y = x4 + 4x3 + 3x2 - 2x + 1,  in Figure 4; it is centered about x = -1, y = 3, at which point its slope is zero.  Note also that this type of quartic, and only this type of quartic, has the property that the three turning points are aligned in the sense that the middle one is equally spaced between the other two.


Let’s see what the conditions are on the coefficients of the general quartic for this to happen.  The derivative is given by




g’(x) = 4Ax3  + 3Bx2 + 2Cx + D
[image: image3.wmf]so that, when x = x0 = - B/4A,



 m0 = g’(- B/4A) =  

Consequently,  any quartic for which
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will have this property and it is fairly simple to create quartics that demonstrate the symmetry in their slopes. (Notice also that this expression for D is very suggestive of the term in the quadratic formula, although the parameters have different meanings here.)  Furthermore, using a CAS system, it is quite simple to show that any quartic g whose linear coefficient satisfies the above condition also satisfies


g(- B/4A - h)   = g(- B/4A + h),

so g is in fact symmetric about the vertical line through its center point at x0   =- B/4A.    This makes sense since, if the slope of the tangent line at x0 is zero and the slope is symmetric about x0, then the curve should be traced out identically in both directions from its center at x0.  

Polynomials in general

The above results suggest that comparable unsuspected symmetries may exist among polynomials of any degree.  Suppose we write


Pn(x) = an xn +  an-1 xn-1 + ... + a1 x + a0.

It is clear that the n-1st derivative of this polynomial is zero at x0 = - an-1/(n an ), which in some way can be thought of as the “center” of the polynomial curve.  Furthermore, a little algebra shows us that the roots of the (n-2)nd derivative occur at the points


 ADVANCE \u 8which reduces to the quadratic formula and the two results quoted above when n = 2, 3, or 4.  


However, there are a number of questions we can raise: What is the significance of the center of a polynomial curve when n > 4?  Do the various symmetry results we stated above generalize to higher degree polynomials?  If they do, what is the significance, graphically, of the symmetry?  We leave the investigation of these questions to the interested readers or their students.  They make for a lovely project for calculus students.

Reference
1.  Gordon, Sheldon P., Florence S. Gordon, B. A. Fusaro, Martha J. Siegel, Alan C. Tucker,  Functioning in the Real World: A Precalculus Experience, Addison-Wesley, Reading, 1997.

Acknowledgment:  The work described in this article was supported by the Division of Undergraduate Education of the National Science Foundation under grants #DUE-9254085 for the PreCalculus/Math Modeling project,  #USE-89-53923 for the Harvard Calculus project, and #DUE- 9555401 for the Long Island Consortium for Interconnected Learning in the Quantitative Disciplines.  However, the views expressed are not necessarily those of either the Foundation or the projects.

Legends
Figure 1: Graph of cubic showing symmetry about the point of inflection

Figure 2: Graph of quartic showing symmetry of the slope about the “center” point

Figure 3: Graph of a quartic versus the graph of its derivative

Figure 4: Graph of  y = x4 + 4x3 + 3x2 - 2x + 1 centered about (-1,3)
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