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Abstract

The author illustrates the qualitative nature of the  differences between reform and traditional courses based on the types of insightful student questions and comments generated in reform classes ranging from college algebra up through multivariable calculus.
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The difference between a traditional calculus course and a "reform" course became dramatically clear to me during a recent visit to one of the most highly selective schools in the country.  I expected to see a significant difference between my calculus students at a two year college and those at this highly prestigious institution. But I was not prepared for the actuality, particularly in a Calculus III class.  Both my own class and the one I visited were roughly at the same point -- the introduction of higher order partial derivatives. In one group, almost the entire class period was devoted to differentiating a handful of rather routine expressions, such as

[image: image1.wmf]that would never occur in real life, with repeated reminders of how to use the chain rule from Calculus I.  In the other class, almost the entire period was devoted to the students, asking repeatedly and pointedly, that I explain to them what  that I explain to them what fxy tells them about the shape of a surface; the significance of  fxx  and  fyy  were clear to them, but what does the mixed partial mean in terms of the behavior of the function?  While not an especially important mathematical point, it was one that these students were not willing to pass on until they fully understood it!


I also had assigned routine differentiation problems similar to the one above to reinforce the mechanics and tested my students on them. But my emphasis in the reform course is on much more than merely performing the routine mechanics -- and that is reflected in what my students come to find important. On paper, the students I have at Suffolk Community College are far weaker academically than the students at the prestigious school I visited. The difference is that in my reform course, I was challenging the students intellectually and they were responding in kind; in the traditional course, the instructor’s stress was on mechanics and his students also reacted in kind. 


Perhaps the most telling indictment of the traditional calculus course is the following comment from a calculus student, overheard during a visit to another major university that was in transition to reform calculus: "The old calculus was much easier.  You didn't have to understand what you were doing to get the right answers."


Over the last few years, I have come to expect a high level of intellectual performance of my students in reform courses at all levels ranging from college algebra up through Calculus III. The above incident only provided me the opportunity to contrast just how differently the students in the two types of courses behave. In this article, I will illustrate some of the deep mathematical insights that have become almost routine in my courses.

Calculus
● Prior to the first class test in Calculus I, based on Chapters 1 and 2 of the Harvard text [3], one of my students asked: "Let me see if  have this straight:"  Then, in a single breath at an incredibly rapid speed, he said: "A function is concave up if it is increasing at an increasing rate or decreasing at a decreasing rate and it is concave down if it is increasing at a decreasing rate or decreasing at an increasing rate. Right?"  Sure!  But, if this were something he had memorized, he would not be asking the question; instead, he was clearly verbalizing a solid graphical image.

●
On the first test based on the same two chapters, where the students had seen families of functions and the concept of the derivative without any formal differentiation formulas, I included a problem giving the graph of the derivative of a function, as shown in Figure 1. The students were asked to indicate the points where the unseen function achieves its maximum and minimum. I expected that they would reason as follows: The derivative is mostly positive, so the function is mostly increasing, and therefore it has its minimum at the left end-point and its maximum at the right. Of the 28 students in the class, nine produced that line of reasoning for a problem they had never seen before. Of the remainder, 14 came up independently with the idea of using the graph of the derivative to sketch a graph of the actual function (reversing the process of graphical differentiation that they had seen). 13 of them actually drew reasonable sketches for the function and used it appropriately to answer the question. More significantly, under the pressure of an exam, these students created the concept of the antiderivative, a notion which had not previously been mentioned in class!

●
About a month into Calculus I, I briefly introduced the notion of an implicit function, commented that in general it is extremely difficult to graph such functions, introduced the idea of implicit differentiation, gave two dumb examples, and then a third example on finding the equation of the tangent line to an implicitly defined curve. A student immediately asked:  "Couldn't you do the same thing at many different points, draw the tangent lines, and trace the curve as it touches each of the tangent lines?"  Yes, we certainly could do that! The only question is whether the idea should be attributed originally to Euler or Poincare?

●
After the previous question, I used the opportunity to reinforce the notion that the tangent line is the best linear approximation to a curve about a given point. I also pointed out that, if you move too far from the point, the curve typically bends away from the tangent line and, in Calculus II, methods would be developed to improve on the approximation.  Another student immediately asked "Like with a circle instead of a line that bends with the curve?"   I responded that while a circle could be used, there were disadvantages with using it and that other functions were better choices. After class, the same student came up to show me her construction of how a circle would be an excellent approximation. She drew a curve, such as that in Figure 2, highlighted all the points of inflection, and demonstrated her idea for using inflection points. Corresponding to each successive pair of points of inflection, she would draw the tangent lines, construct the lines perpendicular to them, and use their point of intersection as the center of a circle which would be tangent to the curve at both inflection points and would bend with the curve between the two points. My reaction to her was: But, why should you expect that the two distances are equal? After about a five second pause, she responded: "How about using an ellipse instead of a circle?" 

The notion of approximating one function by another is a theme that seems to make an extraordinarily powerful impact on many students in calculus. In another Calculus I class, I similarly emphasized the notion of local linearity and suggested that eventually the accuracy would break down.  Again, various students began suggesting ways to improve on the tangent line approximation, first by using circles, and then parabolas. At that point, I couldn't resist going off onto a tangent and so introduced the idea of the Taylor polynomial approximation to a function at a stage where the students had yet to see a single differentiation formula. Yet, this theme kept coming back repeatedly as they interpreted almost everything during the entire year from this point of view. For instance:


● At the end of one class about a month later, I briefly introduced the notion of Newton's Method, but did not have the time for even a single example. On the way out, one student came up to ask "Couldn't you improve on the accuracy by using a Taylor polynomial instead of the tangent line?"  Sure you can -- the result is known as the Euler Correction Formula!

●
To emphasize the notion of local linearity, I briefly discussed the idea of there being no closed form solution for the many-body problem and described how NASA might use local linearity to construct the path for satellites or spacecraft by using Newton's second law of motion to relate the acceleration to the sum of the forces, undo the derivatives to get the position, project along a short tangent line to the motion, and repeat the process to produce a seemingly smooth curve. Another student came up after class (actually the weakest student in the group and the only one to withdraw from the course because she couldn't keep up) to ask: "Couldn't you improve on that path process by using a Taylor polynomial instead of the tangent line?" Great idea! Too bad that someone else thought of it first and it came to be known as the Improved Euler Method for the numerical solution of differential equations.


●
Considerably later in the course, when I was first introducing antiderivatives, I mentioned that not all functions have known antiderivatives and, in fact, there is no closed form expression for the antiderivative of e-x².  One of the students vehemently objected, saying that it could be integrated in closed form. I repeated that it couldn't, but he wouldn't relent, so I asked him how he would do it. His response: expand the function in a Taylor polynomial to as many terms as needed and integrate in closed form. We had only discussed previously the idea of approximating a definite integral by a Riemann sum, but had never talked about the idea of approximating the integrand.


●
Still later in the course, I mentioned that when you rotate the curve for  y = 1/x about the x-axis, the solid of revolution generated has finite volume, but infinite surface area.  One student immediately tossed the following question at me: “Can you give me an example where the reverse is true -- a solid with infinite volume, but with a finite surface area?”  Hmmm, that’s a good question!  It turns out, based on an application of the isoperimetric theorem from the calculus of variations, that such a solid is impossible.  However, that’s a rather powerful theorem to have to bring to bear to answer a seemingly innocuous, but extremely unusual, question in freshman calculus!

●
As part of each of my courses,  I assign the students a series of individualized projects often based on their social security numbers  (See [1]).  Each student is required to submit a formal written report describing the results of his/her investigations on each project. In Calculus I, one of the projects I typically ask them to perform is a complete max-min analysis on their social security polynomial, which is produced by using the digits of their social security number as the coefficients of an eighth degree polynomial. Although the results are usually surprisingly good, some are really incredible. For instance, in one recent report, I found the following gem:  "Although it cannot be seen on a graph, even by zooming in, there is a change in concavity between the local maxima and minima. I decided to create a visual aid by using the third derivative.  Between the two roots of the second derivative, there is a local maximum whose critical point can be found using the root of the third derivative.  This local maximum of  F" corresponds to the lowest point of the concave up segment on the graph...."   Ideally, when teaching any course, we would like our students to be able to take the ideas they have learned and adapt them to other situations.  Having a Calculus I student develop a third derivative test for possible points of inflection and apply it intelligently certainly fits that goal.

●
In a Calclulus III class based on the Harvard multivariable calculus text [4], while introducing the idea of the second derivative test for maxima and minima based on the discriminant


D(x,y) = fxx fyy  - fx y2, 

one of the students threw the following question at me: “Does the size of D tell you anything about how sharply the surface is bending?”  While I stood there pondering this question I had never thought of before, another student responded with: “Think about it this way.  When D is positive, you have a parabolic bowl opening upward.  When D is negative, you have a saddle shape.”  Then, with accompanying hand motions that transformed the bowl into the saddle, he continued, “So, as D goes from positive through zero to negative, the surface changes from bending up to flat to a saddle bending down.  So, it makes sense that the more positive D is, the more the surface bends.”  Now, there are some pathological exceptions to this explanations, but there are my calculus students, not differential topologists!

Precalculus and College Algebra

The kind of insightful questions and comments described above are not limited to students in reform calculus courses. They also arise from students in precalculus and college algebra courses where the emphasis is on mathematical thinking and conceptual understanding, not just on developing algebraic skills needed for the next course. Consider the following few examples:

●
About two weeks into a college algebra course based on [2] for students just out of our traditional intermediate algebra course,  I assigned a problem asking the students to sketch a function which is decreasing and concave up to the left of the point (0,1) and increasing and concave down to the right of  that point. In subsequent class discussion, I led the students to construct such a graph and then was left open-mouthed from a rather unexpected question: "The point where they connect -- is that also a point of inflection?"  Well, yes, the concavity certainly does change about that point, but because the curve is not differentiable there, ... I honestly do not remember ever getting such a question in over 30 years of teaching calculus.

●
About six weeks into the course, having discussed families of monotone functions such as linear, exponential, power, and logarithmic functions, as well as their properties and applications, I came in one day introduce polynomials for the first time. I started with a scatterplot of data supposedly representing the prices of a stock over some period of time, as shown in Figure 3, and raised the question of what kind of function would fit such a behavior pattern. I sketched such a curve and asked the class to describe it. The first response, from this college algebra group, was: "First it's increasing, then it's decreasing, and then it's increasing again.”  This was quickly followed by a second student who called out  "First it's concave down and then it's concave up."  A third student immediately supplied the observation  "It has just one point of inflection."  And then a fourth student chipped in with  "It doesn't have an inverse."
●
A week or so later, I was introducing the ideas of shifting functions. I had discussed vertical shifts and was about to consider horizontal shifts. I asked the class how the graph of y = (x + 2)2 would compare to y = x2. I expected them to use their graphing calculators to look at the two graphs and observe the apparent shift. Instead, I instantly got a simultaneous response from three or four students, all commenting  "It's got a double root at x = -2, so the parabola must be shifted two units to the left."

●
Toward the end of the course, I was giving a very brief introduction to right angle trigonometry, starting with the tangent ratio because it makes more sense to think of needing the ratio of the opposite and adjacent sides in a triangle. Having introduced this ratio, I asked the students to use their calculators to find the values for tan 0̊,  tan 20̊,  tan 40̊,  tan 60̊, and tan 80̊. The natural question that next arose was to observe the growth pattern in these values. The immediate response was that the growth was certainly not linear; then three or four students simultaneously called out that it was growing far faster than linear, so it was more like an exponential function. But still another student instantly countered that suggestion by stating "No, I've already checked the successive ratios and they're nowhere near constant.  It's growing much faster than exponential."

● In a precalculus class, one of the individual projects I assign is based on a set of temperature
measurements for Dallas taken roughly every two weeks over the course of a year. The students
are required to construct a sinusoidal function that models this data. They usually come up with
a variety of schemes for doing this. A formula for this set of data typically looks like
[image: image2.wmf]In one written report in which the students are required to explain their reasoning in creating each of the parameter values, I was delighted to encounter the following passage: "The frequency was the next value to determine.  This was deceptively simple.”  When was the last time any precalculus student described the frequency of a sinusoid, particularly one that is not a single-digit positive integer, as "deceptively simple"?

●  Another individual project I assign in this course involves each student find all the real roots of his or her social security polynomial. They are required to change signs of the coefficients until they get a polynomial having at least four real roots. The course also includes a minor emphasis on probabilistic reasoning, including an investigation of the likelihood that quadratic and cubic polynomials have real or complex roots. The following excerpts from another student's report indicates how well he absorbed all of these ideas: "An eighth degree polynomial has exactly eight roots, some of which may or may not be complex. ... The first (and as it turned out most formidable) task was to generate a function that demonstrated four real roots by crossing the x-axis four times. ... The relative difficulty in finding a suitable function attests to the pervasiveness of complex roots.”

Jason Tsang: Another innovation in the precalculus course is an introduction to the idea of polynomial approximations to the sine and cosine functions.  These are derived based on the use of various trig identities (and so reinforces the identities, while providing an answer to the standard question “What are they good for?”).  It also provides the opportunity to reinforce the behaviorial characteristics of both the sinusoidal functions and polynomials, as well as setting the stage for the subsequent formal development of Taylor polynomials in calculus.  One of the problems on the exam on the trig unit was a rather routine: “The SIN and TAN buttons on your calculator are broken.  Use the COS button to find sin 40̊ and tan 40̊.”    While almost all students approached this in the predictable trig-identity manner, one of these precalculus students converted 40̊ to radians and proceeded to calculate sin 40̊ with a succession of polynomial approximations until he was convinced he had achieved an appropriate degree of convergence, and then found the tangent in the expected way.

Vicki : After leading one college algebra-level class to compile a list of the behaviorial characteristics of cubics, one student raised her hand with a rather unexpected question: “Is it true that every cubic is centered at its point of inflection?”  Wanting to draw her out for the sake of the other students, I asked what she meant by that.  With her eyes screwed up as she was trying to visualize her image and with her hands moving in opposing directions, Vicki responded “Well, if you start at the point of inflection and move in both directions, don’t you trace out the same path?”   Sure you do!  The fact that most professional mathematicians appear not to be familiar with this delightful fact about the symmetry of cubics only increases the significance of this student’s insight.   What’s even more amazing is that Vicki came into the course with a particularly low self-assessment of her mathematical abilities; she viewed herself as an “arty” type, certainly not a math student. 


The above questions and comments are far from the only ones of such a penetrating and insightful nature I get. If anything, I have come to expect such instances of deeply thoughtful conceptual questions in all my courses. Moreover, such questions and comments have come to represent, for me, the highlights of these courses. I fmd them far more telling than merely seeing the answers to the questions I ask on exams. This goes well beyond learning mathematics; these students are creating mathematical concepts. By traditional standards, most of these students would be deemed poor  math students because their algebraic skills are relatively weak. They are certainly less skilled than a TI 92 calculator, but they can think and create, things that that calculator cannot do!


If anything, experiences such as these have convinced me that it is necessary to reassess how we assess our students.  In the past, there was some justification for equating mathematical ability with manipulative ability, at least in the lower level courses.  With the modern tools available today, and those that are likely to emerge in the foreseeable future, that justification is fast disappearing.  There is far more to mathematical ability than being able to move symbols around with facility and, judging by some of the experiences I have had in reform courses, there is an immense treasure of mathematical talent out there waiting to be uncovered.  We have only to look and to stimulate.
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