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Major changes have taken place in the mathematical education of students over the last decade.  These changes have come about for a variety of reasons, including 

(1) the changing demographics of the students taking college-level mathematics 

(2) the growth of technology and what it can provide for the teaching and learning of mathematics, 

(3) the changing mathematical needs among the people who use mathematics.  

All of these factors have major implications for what we teach, and how we teach it, both at the precalculus level and in all other mathematics offerings.

The student population

	Year
	1955
	1965
	1970
	1975
	1980
	1985
	1990
	1995

	Enrollment

(millions)
	2.66
	5.92
	8.58
	11.19
	12.10
	12.25
	13.82
	14.95


Source:  Statistical Abstracts of the U.S.,  Digest of Educational Statistics





Table 1

We first look at the changes in the student population.  Table 1 shows total collegiate enroll​ments, in millions, in various years since 1955 and indicates how dramatic this demographic change has been – an almost six-fold increase in forty years.  

In recent years, it has become commonplace to read and hear the media describe any situation involving rapid growth as exponential, whether or not that is an appropriate model. Using the regression features available on all graphing calculators and spreadsheets, we find that the exponential regression function associated with this data is C(t) =0.421(1.0408)t, where t = 0 corres​ponds to the year 1950.  The base, or growth factor, of 1.0408 indicates that collegiate enrollment has been growing at an annual rate of about 4% over this time period.  The associated correlation coefficient, r = 0.9234, indicates a high degree of correlation.  This function is shown in Figure 1 superimposed over the data points.  We see that it is not a particularly good fit because of the concave down pattern in the data compared to the concave up growth pattern of the exponential function.
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The pattern in the data actually suggests a power function of the form y = A tp, with 0 < p < 1 as a more appropriate choice.  Again using the regression features of a calculator, we find that a power function that fits this data well is D(t) =0.7345 t0.8053, where t = 0 also corres​ponds to the year 1950.  This function is shown in Figure 2 and we see that it is a much better match to the data than the exponential function in Figure 1. The corresponding correla​tion coefficient, r= 0.9917, indicates a very high level of correlation.

The data in Table 2 shows the enrollment, in millions, in collegiate mathematics offerings (excluding statistics and computer science courses) since 1960. 

	Year
	1960
	1965
	1970
	1975
	1980
	1985
	1990
	1995
	2000

	Math Enrollment

(millions)
	0.80
	1.33
	1.76
	2.09
	2.45
	2.52
	2.86
	2.86
	2.89


Source:  CBMS Studies:  Undergraduate Programs in the Mathematical Sciences  

Table 2

The concave down pattern in the data certainly suggests a power function model;  we find that N(t) = 0.1509 t0.7898, where t is the number of years since 1950,.  The associated correlation coef​fi​cient r = 0.9752. This power function for total mathematics enroll​ment, with power p = 0.7898, is growing slightly more slowly than the power function for total collegiate enrollment where p = 0.8053.  So, a somewhat smaller proportion of students is taking mathematics courses, which is not terribly good news to the profession.

For comparison, the corresponding expo​nen​tial regression function for this data is M(t) = 0.8573(1.029)t, where t = 0 corresponds to 1950.  The growth factor 1.029 indicates an annual growth rate of about 2.9%. The corresponding correlation coefficient is r = 0.9031.  Both the power function (solid) and the exponential function (dashed) are shown in Figure 3 and it is clear that the power function is a better fit to the pattern in the data.
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Based on the two exponential models, we see that the growth in mathematics enrollment has proceeded considerably less rapidly (2.9%) than the growth in the overall college enrollment (4.1%). It is interesting to note that we come to the same conclusion about which process has grown faster;  this is not always the case and often will depend on the model chosen.

Actually, the flattening in the data seen in the 1980-85 period (from t = 30 to t = 35) and again from 1990 to 2000 (from t = 40 to t = 50) sug​gests that a better fit might be achieved using a quartic polynomial.  From a more sophisticated point of view, we should expect that this would be a much better fit because quartics are a five-parameter family of functions, while exponential and power functions are two-parameter fami​lies.  The additional three parameters provide three extra degrees of freedom and so should lead to a significantly better fit to the data.

	Year
	1950
	1960
	1970
	1980
	1990
	2000

	Population
	150.7
	179.3
	203.3
	226.5
	248.7
	281.4


Table 3

Next, Table 3 shows the total U.S. population, in millions, since 1950.   
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The associated expo​nential regression function is P(t) = 85.38e0.012t = 85.38(1.0121)t, where t is the number of years since 1900. The growth factor 1.0121 indicates that the U.S. population has been growing at an annual rate of about 1.21% over the time period from 1950 to 2000.  This is considerably slower than the rate of growth of either the entire college-level enrollment or the mathematics enroll​ment. The correlation coefficient r = 0.9897 indi​cates a very high level of positive correlation and, from the graph in Figure 4, we see that the exponential fit is quite good. 


There are several significant implications of the above information.  Fifty, and even 30 years ago (when most of the current mathematics faculty were in school), the students coming to college represented a very small portion of the total U.S. population.  From a traditional mathematical perspective, they were an elite group who had mastered a high level of proficiency in traditional high school mathematics, particularly algebraic manipulation.  They entered college reasonably well prepared for the standard freshman course in calculus, which tended to have a strong algebraic focus.  

More recently, as the cadre of college-bound students has increased dramatically, they can no longer be viewed as an elite group.  Certainly, a comparable percentage of today’s students are as good as the elite of the past, but these students likely attend the elite colleges.  And, both today’s elite students and the next tier of students have increasingly taken more sophisticated mathematics courses in high school.  In 2001, about 185,000 students took the AP calculus exam; reportedly, about twice as many took AP calculus in high school, but did not take the AP exam; and many others took non-AP calculus (often “polynomial calculus”) in high school.  Together, this is likely greater than the number of students who take college calculus.  Consequently, today’s elite students are rarely seen in first year college calculus, let alone in precalculus or courses further down the collegiate mathematics sequence.

Furthermore, the number of students taking AP calculus has been increasing by about 8% for each of the last few years.  This is considerably higher than the 2.9% rate of increase in college mathematics enrollment based on the exponential model.  The implications of this fact are that collegiate calculus enrollments are not likely to increase much at all;  if anything, they may continue the slight decline that has been observed over the last decade or so, as reported in the CBMS studies [1].  Consequently, we should expect, if anything, an increase in the proportion of students taking courses below the level of calculus in the foreseeable future. 


Moreover, let’s look at mathematics enrollments from a somewhat broader perspective.  According to the 2000 Statistical Abstracts of the United States, 1,164,792 bachelor’s degrees were awarded in 1996.  Of these, only 13,143, or slightly over 1%, were in the mathematical sciences (which includes a large number in mathematics education).  In the same year, 758 associate’s degrees were awarded in mathematics out of a national total of 555,216 associate’s degrees, which is on the order of one tenth of one percent.  While we in the mathematics profession have a preoccupation with calculus in particular and the mathematics major in general, these offerings are only small potatoes at most colleges and universities.  And by focusing on having these courses serve the needs of math majors, we tend to do a huge disservice to the mathematical needs of the overwhelming majority of the students we face.


Finally, an examination of the data in the CBMS surveys [1] and other studies of mathematics enrollments in both high school and college show a dramatic drop-off from one year to the next and one course to the next.  Historically, about 50% of the mathematics audience is lost each year in high school.  The efforts of NCTM over the last decade to keep students enrolled in mathematics longer has improved these figures dramatically from Algebra I to Algebra II;  the drop-off rate is now only about 15%.  However, the 50% drop-off figure also applies to each semester in college.  As several physicists have put it, “the half life of math students is one semester”. In an increasingly quantitative society, this should not be acceptable.

Technology and its implications for mathematics education

The student population that the majority of colleges face today consists predominantly of students who increasingly have not mastered tradi​tional high school mathematics.  In turn, ever greater proportions of students are being placed in remedial tracks designed to develop all the traditional algebraic skills that once were necessary for a traditional calculus course.  


But, freshman calculus courses have been undergoing significant change in the last decade as a result of the calculus renewal movement.  These reform calculus courses seek to achieve:

• a balance among graphical, numerical, and algebraic approaches (the Rule of Three),

• an emphasis on conceptual understanding rather than rote manipulation, and 

• a focus on realistic applications from the point of view of mathematical modeling, 




often through an early introduction to differential equations.  

Much of this is possible because of the availability of sophisticated technology, most commonly graphing calculators, although some schools make heavy use of computer software such as Derive, Maple or Mathematica with CAS (Computer Algebra System) capabilities.  An analysis of the status of this movement is in [2] and [3].  A discussion of the challenges to be met in the forthcoming decade is in [4].


Technology has not stood still since the advent of the graphing calculator.  The first generation of graphing calculators, such as the TI-81 and the TI-85, essentially provided the tools to implement the graphical aspect of the Rule of Three.  The second generation, such as the TI-82, the TI-83, and the TI-86 and similar models from other manufacturers provided additional tools to implement the numerical aspect through the use of lists, tables, and spreadsheet-like features.  The newest generation, such as the TI-89 and the Casio CFX-9970G, now complete the triad by providing the CAS capability to perform algebraic operations such as FACTOR, EXPAND, SIMPLIFY, SOLVE, DIFFERENTIATE, and INTEGRATE at the push of a button.  They can solve, in a fraction of a second, any purely manipulative problem that we would ever have expected our very best students to do.  When CAS capability was available only on a computer, it could perhaps be ignored as being too inconvenient to require of all students, except possibly in some advanced courses with limited enrollment.  But, given the availability and reasonable prices of these new hand-held tools, we must face the challenge of rethinking the content, as well as the long-term value to the students, of any mathematics course that continues to place the development of traditional manipulative skills as its raison d’être.


But, if the students in college-level math courses are using sophisticated technology to assist in learning and doing mathematics, the practitioners who actually apply mathematics in all quantitative fields are utilizing technology that is at least as powerful as what we have available in the classroom. And this trend will undoubtedly expand as the capabilities of technology grow and the array of problems encountered outside the classroom expands in their level of sophistication and complexity.  

In reality, any routine operation that people use repeatedly has already been programmed.  It therefore makes little sense to offer mathematics courses that focus primarily on making students into imperfect organic clones of a $150 graphing calculator with CAS capabilities!  The students will never win the competition — they will never be as fast or as accurate as the machine.  Instead, we should be focusing on the intellectual and applied aspects of the mathematics that the machines cannot do.


The challenge we face is to find a reasonable balance between the use of technology and the level of algebraic skill development that is essential for utilizing the technology wisely.

Changes in the mathematical needs of students

In a number of presentations, Henry Pollak has made a strong issue of the changes that have taken place over the last half century in the mathematics that is used in practice.  Fifty years ago, virtually every problem was continuous and deterministic. Problems with a discrete or stochastic component were almost non-existent. Basically, algebraic methods and differential equations with closed form solutions ruled!  Today, the tables have turned 180( — virtually every problem that arises is inherently discrete (in large part because of the digital age in which we live) and virtually every problem has some probabilistic component (there is always some uncertainty).  But the mathematics curriculum, especially its first few years, has not changed appreciably to reflect the needs of the people who now use the mathematics.

The question we need to consider is: What should be the focus of mathematics education, especially at the precalculus level?  I believe that the mathematical discussion at the begin​ning of this article is a large part of the answer.  Very few people today, let alone in the future, will need to factor anything as complicated as x8 - y8.  However, virtually any educated individual will need the ability 

1. to examine a set of data and recognize a behavioral pattern in it, 

2. to assess how well a given functional model matches the data, 

3. to recognize the limitations (often due to uncertainty) in the model, 

4. to use the model to draw appropriate conclu​sions, and 

5. to answer appropriate questions about the pheno​menon being studied.  

In turn, this process requires 

• A deep understanding of the function concept, function notation, and the meaning of variable.

• A knowledge of different families of functions, including being able to distinguish between the different families graphically, numerically and algebraically. 

• A knowledge of the behavior of the different families of functions depending on one or more parameters. 

• The ability to select the appropriate tool, be it pencil-and-paper, graphing calculators, spreadsheets, or CAS system, to solve the equations that arise from using the models.

• The ability to interpret the mathematical results and to communicate these ideas to others.

All of these principles underlie both the NCTM Standards [5] and the AMATYC Crossroads Standards [6].  More extensive discussions of reform efforts in the courses that precede calculus are in [7], [8] and [9].


Let’s see what these ideas mean in the context of precalculus courses and preparing students, not only for calculus, but also for courses in all other quantitative disciplines. Perhaps the best way to see this is from the perspective of some of our critics–the faculty in other disciplines who express recurring complaints about what mathematical skills and knowledge students bring with them to those other courses and the students themselves who vote with their feet to abandon mathematics in such relentless numbers.

 In the past, the first mathematics course that appeared on the “radar screens” of the traditional quantitative disciplines (physics, chemistry, and engineering) was calculus.  The introductory courses they offered were all calculus-based and so any course below calculus did not directly serve any of their needs.   At most schools, these departments, especially physics and chemistry, now offer non-calculus-based versions of their introductory courses to much larger audiences than those who take the calculus-based courses.  As a result, what students bring from precalculus and college algebra courses–and what they don’t bring–is now a growing concern to the faculty in these other disciplines.


What then do students need to succeed in courses in other fields?  They certainly need to know what a variable is, so that they can understand and use the formulas that arise.  They need to know several fundamental classes of functions, most notably linear, exponential, logarithmic, and power functions.  (Other than projectile motion, there are relatively few problems that lead to polynomials;  can you think of any?  Other than inverse proportions and inverse square laws, there are virtually no problems that lead to rational functions.)  


Certainly, these are topics in standard precalculus and college algebra courses, but they tend to get buried in a much more extensive array of techniques for factoring polynomials and producing graphs of every possible type of rational function.  Is this really necessary?  Not for the other disciplines.  What about for calculus?  Let’s see where our years-long development of rational expressions and rational functions ends up. In order to find closed-form solutions for a handful of differential equations, such as the logistic equation y’ = ay – by2, one usually applies the method of partial fractions.  (Ironically, there are simple ways to avoid the use of partial fractions altogether using a clever substitution to transform the differential equation into a simpler one that can be integrated easily without partial fractions;  one can also utilize a CAS, if desired.)  

But, to prepare for this, there is a heavy emphasis in traditional Calculus II courses on integration using partial fractions–often all four exhaustive (and exhausting) cases.  To prepare for this, Calculus I courses often devote an inordinate amount of time to differentiating rational functions.  To prepare for that, precalculus courses emphasize the behavior of all manner of rational functions and their graphs and occasionally even partial fraction decompositions.  To prepare for that, college algebra courses emphasize the algebraic operations of adding, subtracting, multiplying, dividing, and reducing complex fractional expressions.  Each of these is a hard algebraic technique that “separates the men from the boys”. Is it any wonder that we see a 50% drop-off in mathematics enrollment with each subsequent course?

Is this what we want to do?  If the techniques were so vital for success in subsequent courses (as was certainly true in the past) and if it was not possible to introduce what is needed on a timely basis in those subsequent courses to the small fraction of students who really need it, then a case can be made to include those topics.  But these skills are no longer that important.  Modern differential equations courses typically depend on computer software, including CAS systems to generate closed form solutions, so that the qualitative behavior of solutions and their dependence on initial conditions has become a far more important aspect of those courses.  Similarly, there is now a strong emphasis on mathematical modeling to demonstrate the power of differential equations to provide understanding of a wide variety of natural processes.

The reality is that our students will rarely, if ever, have to integrate those terrible differential equations by hand.  So, do they really need all that algebraic preparation?  And, if they don’t need all of it, what else can and should we do with the resulting available time in all our courses from developmental algebra up through calculus?

The need for conceptual understanding
One of the most common complaints from faculty in other disciplines is that students do not know how to find the equation of a line.  That is something we certainly teach, repeatedly, in every course in the curriculum.  Just open any standard textbook from elementary algebra to precalculus and there are hundreds of problems that read: Find the equation of the line through the points (1,4) and (5, 12).  What more could the physicists, chemists, biologists, economists, etc. want?

Well, the problems that arise in their courses tend not to have just one digit, positive integers, for a start.  The slope typically does not work out to be a one-digit integer or a simple fraction such as ( at the worst.  And, much more importantly, the faculty in the other disciplines tend not to give the students two simple points and tell them just to create the equation. They expect their students to make a connection between the mathematics and the context, so that the equation and its component terms provide insight into the situation. They also expect their students to use the equation to answer questions about the context.  Shouldn’t their students be able to do that based on what we teach them in traditional courses?

In a recent article by F. S. Gordon [10], the answer to that last question turns out to be a resounding No!  As one part of an extensive study comparing student performance, success rates, and attitudes based on the type of precalculus course–reform with a modeling emphasis or traditional with an algebraic emphasis–the department posed a series of common questions of a purely algebraic nature on final exams for both precalculus groups.  One of these common questions had a contextual flavor.  The students were given values for the enrollment at a college in two different years and were asked to find the equation of the linear function through those points and to give an interpretation of the meaning of the slope of the line in the context.  In both groups, virtually every student could calculate the slope and find the equation of the line.  In the reform group, virtually every student could give a meaningful interpretation to the slope.  But in the traditional group, only about one-third could give a meaningful interpretation!  A third left that part of the question out altogether;  a large number simply restated the formula for the slope in words–the change in y over the change in x–but did not interpret the value or the context.

As the author put it, “unless explicit attention is devoted to emphasizing the conceptual understanding of what the slope means, the majority of students are not able to create viable interpretations on their own.  And, without that understanding, they are likely not able to apply the mathematics to realistic situations.”  She goes on to address the broader implications of this finding. “If students are unable to make their own connections with a concept as simple as that of the slope of a line (which they have undoubtedly encountered in previous mathematics courses), it is unlikely that they will be able to create meaningful interpretations and connections on their own for more sophisticated mathematical concepts.” We, and faculty in other disciplines, expect students to understand the significance of the base (growth or decay factor) in an exponential function.  We expect them to comprehend what the parameters in a sinusoidal function tell about the phenomenon being modeled.  We expect them to understand the significance of the derivative of a function and the significance of a definite integral.  But, if students cannot create the connection between the slope of a line and its meaning in a context, it is clear that we should not expect them to create comparable connections of more sophisticated ideas on their own.  It is our job to help them make those connections by emphasizing the meaning of the concepts, not just the formulas to be memorized and applied by rote.  

One of the main themes of the calculus reform movement is an increased emphasis on  conceptual understanding of the fundamental mathematical ideas and methods, not just a focus on the development of manipulative skills.  (Remember the old adage: You take calculus to learn algebra?) This same principle of stressing conceptual understanding must be applied in the courses below calculus as well.  If nothing else, we want the students to be prepared for calculus intellectually, not just algebraically.  If they have not developed the ability to understand mathematical concepts and to value the importance of that understanding before walking into a calculus class, they are not prepared for a modern course in calculus.  Nor are they prepared for any associated quantitative course in any other discipline that uses calculus ideas.

In order to accomplish this, it is necessary to emphasize the importance of the concepts and this requires putting heavy emphasis on conceptual problems, as opposed to primarily computational problems.  And this emphasis must be put both in homework assignments and on exams.  Homework problems should not be only repetitions of worked examples in the text that serve as templates.  Exam problems should not be only further repetitions of what the students have previously seen.   When a final exam is just a compilation of problems from class tests with the numbers changed, and when the class tests are just a compilation of weekly quizzes, students are not being educated.  They are being trained in the same way that Roy Rogers trained Trigger to answer such mathematical questions as: How much is 2 plus 3? The horse answered by tapping his hoof on command. 

We owe it to our students to do much more for them–not just for calculus or for other courses, but to function effectively in a rapidly changing society where the one thing they can and should expect is more change over the course of their careers.  Simply put, no one will pay our students $30,000 or more a year if all they can do is reproduce solutions to problems memorized in high school and college mathematics classes!

The need for realistic problems
Reform calculus courses also usually include more realistic, and hence more sophisticated, problems and applications than routine problems that tend to be highly artificial.  This theme should also be carried over to college algebra and precalculus courses.  Traditional algebra applications such as “Ann is 8 years older than Billy and in 5 years she will be twice what he was 4 years ago” are not in the least realistic.  There is no way to pose such a problem without knowing the ages in advance, which makes the entire problem totally artificial.  

But what then constitutes a realistic problem?  Just as two points determine a line, two points also determine an exponential function or a power function; three points determine a quad​ratic function; and so forth.  In any realistic context, one can find two data points – just open a newspaper, a magazine, a textbook in any other quantitative field, or a copy of the Statistical Abstracts of the U.S. or search the Web.  Presuming that the process being studied follows a linear or an exponential or a power function pattern, ask the students to find the equation of that function and use the resulting equation to answer some predictive questions in context.  

All the algebra that anyone could want, and then some, is imbedded in solving those questions.  Because the functions are based on real values, not artificially concocted one-digit integer values, the parameters are almost certain to be unpleasant decimal values, so there is plenty of opportunity to practice one’s skills.  But that practice is done in a hopefully interesting context.  We are not asking the students to solve equations for the sake of practice, but to answer questions that they can see make sense to ask.  That makes an incredible difference in terms of convincing the students that they are learning something that is potentially valuable to them.  

For instance, we created the exponential function P(t) = 85.38(1.0121)t to model the growth of the U.S. population, where t is the number of years since 1900.  We could ask questions such as: Predict the U.S. population in 2005 using this model or When will the U.S. population reach 350 million?  The latter requires solving the equation 85.38(1.0121)t  =  350, a rather more daunting request than solving something like 5(2x)  =  80, but it is far more interesting and useful.  Similarly, we created the power function D(t) = 0.7345 t0.8053 to model the growth in total college enrollment since t = 0 in 1950.  We could then ask:  Predict college enrollment in 2010 or  When will there be 20 million people enrolled in college?  The latter requires solving the equation 0.7345 t0.8053 = 20, which again is considerably more complicated, as well as considerably more meaningful, that the traditional type of problem such as solving 3x4 = 48.  

The trigonometric functions can likewise be introduced using realistic situations. They serve as our primary mathematical models for periodic phenomena.  For example, students can be asked to construct a sinusoidal function to model the temperature in a house where the furnace comes on when the temperature drops to 66 and turns off when the temperature reaches 70, a cycle that repeats every 20 minutes.  One possible result is
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assuming that there is no phase shift.

As another example, students can be asked to model a person’s blood pressure over time given readings of 120 over 80 and a pulse rate of 70.  Again, each of these situations provides a wonderful opportunity to ask questions in context that go well beyond asking students to graph y  =  3 sin 4x or solving 6 sin 2x =  3 in terms of both the level of interest and the level of algebraic manipulation involved. 

Furthermore, every such realistic problem carries with it the opportunity to reinforce the fundamental mathematical concepts–the meaning of the slope of a line or the growth or decay rate of an exponential function or the vertical shift, amplitude, period, and frequency of a sinusoidal function, etc.  It also gives an opportunity to discuss domain and range issues repeatedly – how far can you reasonably extrapolate from the data points?  What are the limitations of the model?

Alternatively, when we give a page-full of exercises asking the students to solve a collection of 50 or 100 equations that all look the same with the numbers changed, we send a very different message.  In reality, only a handful of the students ever bother to do more than a small number of these problems.

Other topics that should be emphasized
Another very common complaint from the other disciplines is that students do not have any understanding of or facility with exponents and logarithms.  In partial response to this, the calculus reform projects have placed considerably more emphasis on exponential and logarithmic functions.  They are no longer relegated to a chapter at the beginning of Calculus II, but have been brought up front as some of the fundamental functions of mathematics.  The same kind of emphasis is required in the courses preparatory to calculus, not just to prepare the students for the subsequent calculus experience, but perhaps even more importantly because these functions are so vital in all quantitative disciplines today.  

In that regard, the treatment of these functions in college algebra and precalculus should not be just one stand-alone chapter and the functions never reappear.  Instead, exponential functions and their properties, just like linear functions and their properties, should arise repeatedly in many different contexts throughout the course.  If we want students to develop an appreciation for certain ideas, we have to give more emphasis to those concepts;  if every topic or type of function receives equal attention, students do not learn what is important and, at best, make their own decisions of what they should learn for the long haul.  

Furthermore, in the other disciplines, the various mathematical functions typically arise in the context of finding an appropriate function to model sets of data, just as they arose in the introduction to this article.  There is a reason that these curve-fitting techniques are incorporated into all graphing calculators and spreadsheets such as Excel – they are the standard tools of today’s practitioners, both in class and on the job.  But, as I tried to demonstrate in the analysis of the data earlier, it is not as simple a matter as just pushing a button to get an answer.  Some very deep levels of understanding are essential.  One has to know the behavioral characteristics of each family of function in order to make an intelligent selection of possible functions to use as models.  There are some critical difficulties that can arise that are domain issues for these functions.  For instance, the routines used by calculators and by spreadsheets to fit exponential, power, and logarithmic functions to data involve transformations of the data to plot log y versus x, or log x versus y, or log y versus log x.  (The first two are semi-log plots;  the third is a log-log plot.)  But, if any of the data entries is zero or negative, the logarithms are not defined.  The error messages the systems give are not exactly self-explanatory;  the person who pushes the button has to know the mathematics to understand the message and to know how to avoid the problems.  

These techniques and ideas are ideal ones to incorporate into college algebra and precalculus classes for a variety of reasons.  First, they give the opportunity to reinforce the important characteristics about each family of function, so that the students see the ideas coming back again.  Second, they see how these functions arise in practical settings, which is a great motivation for topics that otherwise tend not to appear all that useful.  Third, this gives us the opportunity to ask interesting, predictive questions in the contexts of the data, so that the students have even more occasions to practice their skills solving the resulting equations.  Fourth, the students are being prepared for the specific kinds of applications that will arise in their other courses;  in turn, this increases their level of appreciation for the mathematics course.  That may not sound terribly important, but in the long run, it makes our courses far more important to the students.  Instead of dropping out of mathematics, they are encouraged to continue to subsequent courses. 

What can be removed

Clearly, there are many new topics and methods that I believe should be included in courses at this level.  To do so, we have to find time.  This means eliminating something.

Back when I studied trigonometry, we were all expected to know three fundamental laws:  the Law of Sines, the Law of Cosines, and the Law of Tangents.   These were not just theorems or formulas; they were Universal Laws!  I’ve been asking mathematicians for the last several years about the Law of Tangents.  So far, only one or two actually know it;  a small percentage recall that there ever was such a law; and the overwhelming majority never heard of it.  It is not that this law was repealed or that triangles stopped obeying it.  The reality is that many topics, some of marginal significance, others that once were considered extremely important (otherwise the Law of Tangents would not have been called a law), have been removed from the curriculum in the past with seemingly minimal long-term impact.  

We face the same decisions today.  Some topics in the present syllabus have to be relinquished to make room for newer, more important topics.  Over the last half century, as has been pointed out, the focus of mathematics in practice has changed dramatically and an incredible body of new mathematical ideas and techniques has been developed.   In turn, we owe it to our students to at least acquaint them with some of these concepts– matrix algebra, probabilistic reasoning via simulation, recursion and difference equations, etc.– early in their mathematical experiences.  Part of the need is to provide the students with a broader view of what mathematics is all about;  more importantly, these are important mathematical techniques they will need for their other courses.  

For example, in the 1930’s, linear algebra was a graduate course;  it gradually worked its way down to a junior-senior offering, then to a sophomore-level course, and today matrix methods and their applications are standard topics in modern high school mathematics.  Once, the entire focus of algebra up through calculus was to prepare students for a traditional course in differential equations where they saw, for the first time, the power of the mathematics to create mathematical models and to formulate closed-form solutions.  Today, the focus in most other disciplines is on difference equations instead of differential equations–they are conceptually easier, they are simpler to set up, and they are much easier to solve, numerically and graphically, with modern technology.

What then can be relinquished from precalculus and college algebra courses?  I have already suggested downplaying the emphasis on extensive treatments of rational expressions and rational functions at all levels of the curriculum.  Several other topics I would suggest eliminating are things like Descartes’ rule of signs, the rational root theorem, and synthetic division.  For a long time, when finding the roots of polynomials was a major undertaking, these were valuable tools of the mathematician and the practitioner.  Today, many students have calculators with a FACTOR button.  Every student has at his or her fingertips a calculator with a numerical root-finding routine built in, not to mention the ability to zoom in repeatedly either on the graph or in a table of values associated with any polynomial.  Locating the real roots of a polynomial is no longer a challenge;  it should not be a major emphasis in our courses.  But understanding what the roots are and knowing how to use them intelligently is certainly still a critically important aspect of these courses.

In a similar vein, we have six trigonometric functions because, in the pre-technology centuries, it was much simpler to have tables available of all six possible ratios of the sides in right triangles to minimize hand computation.  Today, computational issues are irrelevant.   So, what valuable role do the secant, the cosecant, and the cotangent play? There are very few realistic problems that involve any of these functions and each of these problems can be solved quite easily by using only the sine, the cosine, and the tangent, along with several “new” identities:
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The Harvard calculus course, for instance, totally avoids the use of cotangent, secant, and cosecant without any loss; there is therefore little reason to bedevil students with them in precalculus and trigonometry courses.  They take up an inordinate amount of time for virtually no gain.  In fact, a number of other nations, including Russia, France, and Israel, apparently never mention these three functions in any of their mathematics courses and the mathematicians and scientists they produce never seem particularly handicapped by this loss.


Changes in pedagogy  

So far, I have focused primarily on content issues.  But giving any course incorporating the philosophies mentioned above necessitates some significant changes in pedagogy.

Let’s first look at the dynamics when non-routine problems are assigned for homework. With purely algebraic manipulation problems, there is a clear correct answer.  If a student raises his or her hand to question such a problem, it is almost always possible for an experienced instructor to glance at the problem and immediately anticipate the algebraic error that the student has made.  One can just write out the solution on the board, point out the usual algebraic pitfall, and presume that the problem is finished. 

This is not the case with conceptual problems.  There may be an entire spectrum of possible, legitimate answers. There may be a variety of reasons that the student couldn’t do the problem: a lack of understanding of what is being asked, some basic misinterpretations of fundamental ideas that are essential to the problem, or perhaps just thinking much too deeply into the situation.  For example, I am reminded of one problem I gave on a test in calculus:  A cylindrical tank develops a leak at the bottom and the rate at which the liquid in the tank escapes is proportional to the height of liquid.  Sketch a graph of the height of liquid as a function of time. (Note that the assumption of the rate being proportional to the height is inaccurate.)  Most of the students were able to solve this with little difficulty, but one student objected to the solution everyone else had – they had all assumed, as had I, that the tank was standing on end.  He claimed, rightly, that no such tank would ever be so positioned; it would always be lying on its side, making the problem far, far more difficult.  Incidentally, the graph he had drawn was correct for his interpretation.

As another example, a homework problem that I like to give very early in college algebra and precalculus involves a formula for the number of calories in a peanut butter sandwich:  C = 150 + 6P, where C is the number of calories associated with P grams of peanut butter.  I ask the students, among other things, to devise reasonable values for the domain and range of this function.  The level of debate often grows quite heated as they come to grips with what domain and range really mean in a practical context.  But these concepts take on a life of their own in the students’ minds.  It is no longer just a matter of looking for and avoiding places where you divide by zero and take the square root of a negative number!

When students are asked to do non-routine homework problems, the instructor must expect to devote considerably more class time to going over many of those problems than would be necessary if the emphasis is purely algebraic.  The students have to be encouraged to ask questions – questions about the homework and questions about the concepts and methods being presented.  The instructor has to be prepared for very different interpretations on the part of the students.  This can lead to a very different classroom atmosphere, one where the instructor does  less lecturing and the students assume a more active role in the learning process.  

For instance, I recall one incident in college algebra when I was leading the class to compile a list of characteristics of cubic functions – how the number of turning points and the number of inflection points relate to the degree, the significance of the real and complex roots, etc.  One student, who had an exceptionally poor opinion of her mathematical ability (a high school drop-out who had done miserably in all her previous algebra-oriented math courses) raised her hand to ask, somewhat tentatively:  “Is it true that every cubic is centered at its point of inflection?” I asked her to explain what she had in mind, so the rest of the class could see what she was getting at.  With her eyes half-closed as she envisioned the idea and with her hands moving in the air, she added: “Well, if you start at the inflection point and move in both directions, don’t you trace out the identical path both ways?”  

There are some very different ways in which mathematical ability and talent can manifest itself.  Traditionally, most of us have assessed students’ ability purely on the basis of how quickly and accurately they could manipulate symbols.  From that point of view, the best student any of us could ever have is a TI-89 calculator, as I said before.  But mathematical ability means much more than that.  At the professional level, we consider creativity and insight as the hallmarks of a good mathematician.  The identical assessment should be placed on our students and we should provide them the opportunity to, and an environment in which they can, demonstrate those qualities.  

Non-routine conceptual and realistic problems can also provide the opportunity to have the students work together in small groups using collaborative learning. Again, this changes the classroom dynamic considerably.  For example, when developing the practical meaning of the parameters in a sinusoidal function, I hand out a set of data on historic high temperatures in Dallas every two weeks over the course of a year and ask the students to create a sinusoidal function based on the data.  There have been occasions when I would assign this problem to groups of three or four students some 20 minutes before the end of class.  Twenty five or 30 minutes later, I would have to leave for another class while the students were all still sitting there, oblivious to the time, arguing over the problem and how to turn the numbers into amplitudes, vertical shifts, and phase shifts! 

The fascinating thing about this project is that there are several different strategies that the students can develop for estimating the various parameters.  One of the most memorable lines by a student in a written report based on this problem was: “The next quantity to be determined is the frequency.  This was deceptively simple.”  How often does a student in a precalculus course describe the frequency of a sine function as “deceptively simple”, particularly when the value he obtains for the frequency is .0172 (which is 2/365)?


I also recommend assigning individual or small group projects related to the mathematical content of a course.  For example, I assign a project requiring students to find a set of data of interest to them and perform a complete analysis of it – finding the best linear, exponential, and power function to fit the data, and asking and answering pertinent questions (i.e., predictions) based on the context.  Each student is required to write a formal project report.  For instance, during a recent semester, a sample of the topics studied by the students in one of my precalculus classes include:


The number of sexual harassment cases filed as a function of time.


The likelihood of car crashes as a function of blood alcohol level.


The growth of the prison population as a function of time.


The time of high tide at a beach as a function of the day of the month.


The amount of solid waste generated per person as a function of time.


The time for water to come to a boil as a function of the volume of water.


The size of the human cranium over time during the last three million years.


The results of a serial dilution experiment in biology lab.


The growth in the Dow-Jones average as a function of time.


The Gini Index measuring the spread of rich versus poor in the population over time.


The number of immigrants who entered the U.S. over time.


The mean annual income as a function of the level of education.ADVANCE \d 3

ADVANCE \d 0
In the process of writing such reports, the students must decide which variable is independent and which is dependent.  They must come to grips with the practical meaning of domain and range as the limitations inherent in the model they are creating;  again, it is not just avoiding division by zero, but rather a high level of mathematical judgment as they connect the mathematics to the real world.  They must understand the practical meaning of the slope of a line, not just think of it as a ratio of the number of boxes in two directions.  They must interpret the growth or decay rate of an exponential function in context.


Moreover, several of these data sets arose from topics the students encountered in other courses they were taking, particularly in the laboratory sciences.  I cannot overstate the value to the students of seeing the direct link between the mathematical methods they were learning in their precalculus class and the use of these methods in their other courses.  Even for those who found their data in a magazine article or a reference book, the ability to apply the mathematics to a topic of personal interest gave each student a feeling of ownership.  And, once they have taken ownership that way, the battle to convince them that the mathematics is valuable, and worth working at, has been won. 


Furthermore, one of the common themes that runs through the curricula discussions in all the quantitative disciplines is the need for students to develop writing and communication skills.  Most of our courses are primarily service courses and we can help support this need in other fields by including a writing and communication component in our offerings.  Other departments will certainly appreciate it.  But more importantly, it also provides the opportunity for those students with strong verbal ability (and possibly relatively weak algebraic ability) to apply their forte to our subject.  It also helps improve the writing skills of those who are weak in that area.  (You may also want to find out what kind of support your school provides in the area of writing and direct some students to a writing lab, if they need help.)  

Also, when students write about mathematics, it helps them develop a firmer grasp on the mathematical concepts and applications.  At the same time, when they do not have a firm grasp on the ideas, this comes through loud and clear in a written report and allows the instructor to identify areas where the students are missing a concept or misinterpreting an idea.  For instance, I recall one student in Calculus II who consistently misused the word “interval” in a report;  he clearly had no idea what an interval was, mathematically, and there was no way that I could possibly have observed that gap from tests.  

Most importantly, though, the use of written project assignments or even the occasional written response to a homework or test problem makes the students internalize the meaning of the mathematics by having them create the verbal connections between the mathematics and their own understanding of it.  
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