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Background  
Each year, over 1,000,000 students [8] take College Algebra and related courses. Most of these courses were originally designed to prepare students for calculus, and most are still offered in that spirit.  At almost every college, the mathematics program is designed to move as many students as possible up the “pipeline” to become math majors or to serve the traditional needs of the physical sciences. 
But, STEM majors are only a small fraction of the students we face.  For instance [9], in 2005, almost 70,000 Associates degrees were awarded, 807 (about 1% of the total) in mathematics and 2814 (or 4%) in the physical sciences and science technologies.  Similarly, almost 1,440,000 Bachelor’s degrees were awarded;  14,351 in mathematics and statistics (1% of the total) and 18,905 (also about 1%) in the physical sciences and science technologies.  
Furthermore, most STEM programs expect that in-coming students are ready for mainstream calculus.  However, very significant changes have taken place in calculus enrollment.  Today, many more students take calculus in high school than in college [8, 2] and calculus is well on its way to becoming a developmental course.

Why then do students take College Algebra? How many are successful?  What happens to those who pass?  Several studies indicate that only a very small handful ever go on to mainstream calculus or even applied calculus.  Herriott and Dunbar [6] found that only about 10-15% of the students enrolled in College Algebra at about 15 universities are in majors that require calculus, and that is usually applied calculus. Waller [10] reports that only about 2-3% of the more than 1000 students who start College Algebra at the University of Houston – Downtown each fall ever go on to start Calculus I over the following 3-year period. Herriott and Dunbar [6] also report that only about 10% of the students at the University of Nebraska who successfully completed College Algebra over the past 20 years ever started Calculus I over the following four year period and almost none started Calculus III.  
The results at several two-year colleges are somewhat better.  Both Mercedes MacGowen and Norma Agras have reported that perhaps 15% of the students who successfully complete College Algebra have subsequently gone on to start Calculus I at both William Harper Rainey College and at Miami-Dade College, respectively.  This higher percentage can probably be attributed to the fact that the students at two-year schools are, on average, older and more mature, and so take their courses more seriously.  Also, at two-year colleges, College Algebra tends to be taught by full-time and experienced part-time faculty compared to the universities, where they are usually taught by graduate TAs.  Nevertheless, 15% is still a small fraction of those who successfully complete the College Algebra course.  Moreover, DFW rates on the order of 50%-75% appear to be the norm, nationwide.  

It is increasingly evident that virtually none of the students we see in College Algebra will ever become math, physics, or engineering majors.  As such, we are guilty of providing the overwhelming majority of these students with a mathematical experience that is not useful to them.  It is this realization that has prompted the MAA to launch major initiatives to change the focus in the courses below calculus to better serve the needs of the students.

What the Other Disciplines Need
There are two key questions that need to be addressed:  
1. Why do more than a million students take these courses each year?  

2. What do these students really need from these mathematics courses?   

  To address the first question, many students are funneled into these courses based on placement exams, both national and home-grown, that were designed with the traditional mathematics pipeline in mind.  Many students are advised to take these courses because their advisors are also thinking in terms of the traditional mathematics sequence.  Many more take these courses because they fulfill Gen Ed requirements, particularly at the large public universities.  However, the majority of the students take these courses because they are required by other departments, either as prerequisites/co-requisites for introductory courses in those fields or as a requirement for a major in those fields. This is especially true of the laboratory sciences, which typically require either College Algebra or Precalculus for virtually all of their introductory offerings, and certainly for all of their introductory offerings for non-majors.  The same is true for business and economics majors.  
But, what do these disciplines really need their students to learn in introductory mathematics?  To find out, the MAA, through its committee on Curriculum Renewal Across the First Two Years (CRAFTY), recently conducted the Curriculum Foundations project.  In this effort, leading educators from nearly 25 other disciplines were invited to participate in discipline-workshops in which they discussed among themselves the current mathematical needs of their discipline and developed recommendations to the mathematics community.  The recommendations from the first round of 17 Curriculum Foundations workshops are in the MAA Notes volume A Collective Vision: Voices of the Partner Disciplines [4].  The recommendations from a second round of workshops will appear soon.
Let’s begin with some of the comments and recommendations made by the biologists, whose students certainly account for, by far, the largest number of students from the laboratory sciences  we see in our courses. 

· New areas of biological investigation have resulted in an increase in quantification of biological theories and models.

· The collection and analysis of data that is central to biology inevitably leads to the use of mathematics.

· Mathematics provides a language for the development and expression of biological concepts and theories.  It allows biologists to summarize data, to describe it in logical terms, to draw inferences, and to make predictions.

· Statistics, modeling and graphical representation should take priority over calculus.

· The teaching of mathematics and statistics should use motivating examples that draw on problems or data taken from biology.

· Creating and analyzing computer simulations of biological systems provides a link between biological understanding and mathematical theory.

The biologists then went on to discuss some of the most important quantitative skills needed for biology:

· The meaning and use of variables, parameters, functions, and relations.

· To formulate linear, exponential, and logarithmic functions from data or from general principles.

· To understand the periodic nature of the sine and cosine functions.

· The graphical representation of data in a variety of formats – histograms, scatterplots,  log-log graphs (for power functions), and semi-log graphs (for exponential and log functions).

· Some calculus for calculating areas and average values, rates of change, optimization, and gradients for understanding contour maps.

· Statistics – descriptive statistics, regression analysis, multivariate analysis, probability distributions, simulations, significance and error analysis.

· Discrete Mathematics and Matrix Algebra – graphs (trees, networks, flowcharts, digraphs), matrices, and difference equations.

Finally, the biologists went on to make some very interesting observations regarding the relationships between mathematics and biology, including
· The sciences are increasingly seeing students who are quantitatively ill-prepared.

·  The biological sciences represent the largest science client of mathematics education.

·  The current mathematics curriculum for biology majors does not provide biology students with appropriate quantitative skills. 

·  The biologists suggested the creation of mathematics courses designed specifically for biology majors.

·  This would serve as a catalyst for needed changes in the undergraduate biology curriculum.

·  Biology as a discipline must also have to provide opportunities for the biology faculty to increase their own facility with mathematics.

Next, let’s consider some of the key points raised by the chemists, who began by identifying six major themes for the mathematical preparation of chemistry students:

· Multivariate Relationships:  Almost all problems in chemistry from the lowly ideal gas law to the most sophisticated applications of quantum mechanics and statistical mechanics are multivariate.

· Numerical Methods:  Used in a host of practical calculations, most enabled by the use of computers 

· Visualization:  Chemistry is highly visual.  Practitioners need to visualize structures and atomic and molecular orbitals in three dimensions.

· Scale and Estimation:  The stretch from the world of atoms and molecules to tangible materials is of the order of Avogadro’s number, about 1024.   Distinctions of scale, along with an intuitive feeling for the different values along the scales of size, are of central importance in chemistry.

· Mathematical Reasoning:  Facility at mathematical reasoning permeates most of chemistry.  Students must be able to follow algebraic arguments if they are to understand the relationships between mathematical expressions, to adapt these expressions to applications, and to see that most specific mathematical expressions can be recovered from a few fundamental relationships in a few steps.

· Data Analysis:  Data analysis is a widespread activity in chemistry that depends on the application of mathematical methods.  These methods include statistics and curve fitting.

Now let’s turn to the comments made by the physicists, who one might expect to demand the most mathematics of their students. The main points they raised were:

· Conceptual understanding of basic mathematical principles is very important for success in introductory physics.  It is more important than esoteric computational skill.  However, basic computational skill is crucial.  

· Development of problem solving skills is a critical aspect of a mathematics education.  

· Courses should cover fewer topics and place increased emphasis on increasing the confidence and competence that students have with the most fundamental topics.  

· The learning of physics depends less directly than one might think on previous learning in mathematics.  We just want students who can think.  The ability to actively think is the most important thing students need to get from mathematics education.  

· Students need conceptual understanding first, and some comfort in using basic skills; then a deeper approach and more sophisticated skills become meaningful.  Computational skill without theoretical understanding is shallow.

     Finally, let’s also look at some of the major points made by the business faculty:  

· Mathematics is an integral component of the business school curriculum.  Mathematics Departments can help by stressing conceptual understanding of quantitative reasoning and enhancing critical thinking skills.  Business students must be able not only to apply appropriate abstract models to specific problems but also to become familiar and comfortable with the language of and the application of mathematical reasoning.  Business students need to understand that many quantitative problems are more likely to deal with ambiguities than with certainty. In the spirit that less is more, coverage is less critical than comprehension and application.   

· Courses should stress problem solving, with the incumbent recognition of ambiguities.  

· Courses should stress conceptual understanding (motivating the math with the “whys” – not just the “hows”). 

· Courses should stress critical thinking.

· Courses should emphasize statistical thinking to reflect the uncertainties and risks associated with business decisions.

     In reviewing the reports and recommendations from all of the Curriculum Foundations workshops, it is clear that there is an amazing degree of convergence in the thinking regarding the mathematical needs of students in almost every other quantitative discipline, namely:
· Conceptual understanding is far more important than rote manipulation.
·  Realistic applications and mathematical modeling that reflect the way mathematics is used in other disciplines and on the job
·  Fitting functions to data

·  Statistical reasoning

· The ability to use technology routinely and wisely, though typically the technology of choice in most other disciplines is the spreadsheet rather than the graphing calculator.

However, when one actually discusses some of these issues in depth with faculty from the lab sciences to see precisely what they mean by many of these recommendations, some fascinating perspectives become evident.  In particular, especially in biology, though also in chemistry to a somewhat lesser extent and in introductory physics (especially in large offerings such as earth and space science) extremely little, if any, mathematics arises in the course itself.  Mathematics arises almost exclusively in the laboratory, when the students have to interpret and analyze their experimental data, and it is then that the weaknesses in their mathematical skills become blatantly obvious. 
The students are not able to read and interpret graphs, let alone construct a graph of their data – they do not understand the difference between the independent and the dependent variable; they do not comprehend issues of scale for the two axes; they do not see issues related to the practical meaning of the domain and range.  They have trouble drawing a line to capture the trend in the data, presuming that the points fall into a roughly linear pattern.  They have even more trouble trying to estimate the equation of that line, particularly because the variables used are almost never x and y, but rather other letters that are chosen to suggest the quantities in question.  And, because the variables are not x and y, all the practice they have supposedly had in years of finding slopes and equations of lines in math classes seemingly has nothing to do with the issue at hand with the lab data.  
Further, the students have trouble interpreting the practical significance of the slope or the intercept of the line, because their mathematical training typically focused on doing the calculations, not thinking about what the results mean.  They also have trouble calculating the simple statistical measures for the data, such as the mean, median, and standard deviation, let alone understanding how to interpret those values. 
Although the list of complaints from the faculty in the lab sciences goes on and on, the overriding point that comes through is that most of these issues are at the level of introductory mathematics, not calculus and certainly not at any higher level. 

Moreover, virtually the same issues arise in quantitative courses in business and other social sciences when the students likewise have to come to grips with real-world data, although it is not laboratory data.  Thus, in this way, one can almost view the social sciences as a somewhat different kind of laboratory science.  

There are other aspects to this as well.  Fifty years ago, virtually every mathematics problem in practice was continuous and deterministic. Problems with a discrete or stochastic component were almost non-existent. Basically, algebraic methods and differential equations with closed form solutions ruled!  Today, the tables have turned 180( — virtually every problem that arises is inherently discrete (in large part because of the digital age in which we live) and virtually every problem has some probabilistic component (there is always some uncertainty).  But the mathematics curriculum, especially its first few years, has not changed appreciably to reflect the needs of the people who use mathematics today.  This is particularly true at the large universities, where courses such as college algebra are often the only low-level, credit-bearing offerings; in contrast, at many two-year colleges and some four-year schools, courses such as introductory statistics are given by the mathematics department as alternative offerings for some students not going into the sciences. 
In a previous article [5], the author discussed many of the curriculum issues involved in emphasizing conceptual understanding over the development of traditional algebraic skills.  In what follows, we look at the issues involved in emphasizing problem solving and mathematical modeling in these courses as a way of providing the students with the kind of experience that will help them carry the mathematical ideas and techniques over to their courses in the other disciplines. We also discuss ways in which statistical ideas and methods can be integrated into courses at this level in natural ways that are simple applications of the mathematical concepts. However, those students who do go on to take more advanced mathematics courses are also better served by this kind of experience.
Reacting to the Challenges

The recommendations for mathematics courses that provide the kinds of mathematical understanding and skills needed for the laboratory sciences represent a significant challenge to the mathematics community.  Most courses we offer don’t meet their students’ needs, particular at a time when those fields are becoming increasingly quantitative.  Faculty in other fields are increasingly frustrated with students who are unprepared to handle the mathematics in their courses.  They devote more and more class-time teaching the required mathematics.  Simultaneously, the other fields face their own challenge to include more new material to reflect changes taking place in all fields today.  Consequently, it is easy to foresee scenarios in which other departments will begin dropping mathematical prerequisites and co-requisites if we don’t offer the kind of mathematical experiences their students require; the time and credits saved can easily be off-set by additional courses within the discipline, especially if they already have to teach the needed mathematics.

Integrating Statistics into College Algebra and Precalculus
As mentioned above, many students take college algebra courses as a prerequisite for introductory courses in the laboratory sciences.  Many other students take college algebra as a prerequisite for the first course in statistics, particularly at large universities where statistics courses are taught exclusively through a statistics department or within the various disciplines.  At other schools, large numbers of students, often those in business programs and in other social science programs, are required to take both statistics and typically a one-semester applied calculus course; for these students, college algebra is often taken after the introductory statistics course and before calculus.  And, of course, there is a very large body of students who have no intention of ever taking a statistics course, but who do take college algebra for other reasons.

The challenge we face is finding ways in which statistical ideas and data analysis can be integrated into a college algebra course in natural ways that support and reinforce the basic concepts and methods of college algebra.  Data analysis in the sense of fitting functions to data has become a fairly routine topic in most textbooks in recent years as a way in which interesting and realistic applications of each family of functions (linear, exponential, power, logarithmic, polynomial, and even sinusoidal) covered in the course can be applied in real life.  The extent to which this material is actually used by instructors around the country is, unfortunately, uncertain.  

Several “reform” college algebra texts include a chapter that looks at some simple statistical ideas such as finding the center and spread in a set of data, and displaying data graphically.  However, these texts have been written from the perspective of using the college algebra course to satisfy quantitative literacy requirements for students who are taking the course purely as a terminal mathematics experience.  As such, they really don’t address the needs of students in the laboratory sciences, nor do they go far enough to provide a reasonably broad introduction to statistical ideas. At the same time, these statistical ideas arise only in the context of that free-standing chapter, so they are certainly not very extensive nor are they naturally integrated into the entire course. 

The problem we faced was finding ways to incorporate a considerable body of statistical ideas and methods in a natural way throughout the entire college algebra or precalculus course.  Also, this had to be done in a way that takes into account the wide variety of audiences in the course.  This includes those who have not seen statistics previously and who will be well served by a good introduction to it prior to taking a full course in statistics and those who have previously taken a statistics course and who will be well served by seeing many of the same ideas for a second time in a new and probably more mathematical context.

Some of the problems many students bring with them into courses such as college algebra is a lack of understanding of what the mathematical notation is all about – the symbols that stand for variables, the different types of variables that arise in connecting mathematics to the real world (where everything is not mindlessly x and y), and the notion of the scales in reading and interpreting, let alone creating, graphs and charts.  All of these concepts can be reinforced in the process of looking at real-world data and creating tables and graphs.  In particular, this gives a wonderful opportunity to stress the difference between the dependent and the independent variables in a wide variety of contexts, as well as the practical meaning of the domain and range of functions.  (Recall that these are some of the key issues raised in the Curriculum Foundations project, as mentioned earlier.)
In the process of introducing different types of behavior patterns for functions – increasing versus decreasing, concave up versus concave down, turning points, and inflection points –one can look at a normal distribution pattern as an additional example.  This provides an effective way to reinforce the notion of the mean (the center of a set of data) and the standard deviation (the spread in a set of data).  Subsequently, in the context of linear functions, the idea of the z-value associated with a measurement x can be introduced as nothing more than a linear function relating the two variables.  

Furthermore, in the process of discussing the regression line to fit a set of data, particularly if it is laboratory data, it is natural to point out that there could be many different sets of data, each leading to a different regression line.  A simple computer graphics simulation provides the visual support to make these different lines come to life and for an investigation on the effects of using different sample sizes.  The author has developed a very effective version of such a simulation in Excel that is available to any interested reader at farmingdale.edu/~gordonsp.  We illustrate two possible results in Figures 1 and 2, which show, respectively, the outcomes associated with samples of size n = 4 and n = 20. In the first case, we see that many of the sample regression lines have slopes that vary dramatically from that of the population’s regression line (the heavy line in the figure);  in the second case, almost all of the sample regression lines have slopes that are very close to that of the population regression line.

Such an investigation also provides a wonderful opportunity to stress two of the key themes in statistics – the effect of sample size on the outcome and the variation that occurs both within a sample and between different samples.  Certainly, these notions are critical for anyone who will be working with laboratory data.

At a later stage in the course, in the process of discussing shifting and stretching of functions, one can return to the normal distribution function

[image: image1.wmf]x

mm

=


that is centered at the mean µ and has standard deviation σ.  Consequently, it is possible to emphasize the fact that the normal distribution curve has been shifted horizontally by an amount equal to µ, because of the presence of the (x - µ) term, and that it has been stretched/squeezed vertically by the effect of σ both as a multiple in the denominator of the coefficient and as a divisor in the variable term in the exponent.  


One can also look at the normal distribution function as an example of a composite function.  This is particularly valuable to do in the sense that it is not an artificially created example, such as the ones we typically use to illustrate the idea of a function of a function, but rather one that is used in all areas of human endeavor.  That makes the concepts more meaningful to the students and provides an additional level of motivation that is often not present with a more standard treatment of composite functions that all too often give the impression that it is something being done for the sake of a mathematician. 


Subsequently, one can introduce the notion of the distribution of sample means.  This distribution consists of the means of all possible samples of a given size drawn n from some underlying population having mean µ and standard deviation σ.  The Central Limit Theorem, which is undoubtedly the single most important result in inferential statistics, provides information on the characteristics of this population.  In particular,

1.  The mean of this distribution is 
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3.  If the underlying population is roughly normally distributed, then the distribution of sample means is also normally distributed;

4.  If the sample size n is sufficiently large, then the distribution of sample means is roughly normally distributed whatever the shape of the underlying population.  Typically, samples of size n > 30 are sufficiently large to assure normality.
These ideas on the distribution of sample means also provide a wonderful opportunity to reinforce the notions of shifting and stretching functions.   A computer graphics simulation that draws repeated random samples and displays the means of those samples in a histogram can provide the visual and numerical support for such an investigation. In our precalculus setting, we only consider the case of large sample means, so that the distribution of sample means will be roughly normal.  The distribution of sample means is centered at the mean of the underlying population µ, so the center of the histogram representing the sample means is typically very close to the center of the underlying population and the numerical value for the mean of all the sample means typically comes out very close to the population mean µ.  Therefore, one has the same horizontal shift in the distribution of sample means as in the underlying population.  

Furthermore, the spread in the distribution of sample means clearly depends on the sample size n. Using the simulation with large numbers of samples of size n = 4, 9, 16, and 25, it quickly becomes clear to the students, both visually from the graphs and numerically from the calculated values of the mean of the standard deviations of the samples, that the spread is, respectively, about 1/2, 1/3, 1/4, and 1/5 of σ.  Since we are dealing with fractional multiples of σ, the distribution of sample means is clearly equivalent to a horizontal squeeze of a normally distributed population and formula (1) quickly materializes.
Having the Central Limit Theorem, it is simple to develop the idea of confidence intervals and tie this to the problem of estimating estimate a population’s mean based on a single experimental sample. 

In discussions with some biology faculty, it has become clear that there is also a need to introduce the concept of hypothesis testing, since this is a fundamental statistical tool, particularly in any introductory biology course that addresses genetics.  The author has not been able to devise a natural way to integrate this notion into the flow of topics that would normally be considered part of a course at the college algebra or precalculus level.  The alternatives appear to be either to incorporate hypothesis testing as part of an additional unit on probability (and there simply does not appear to be adequate time in a four-hour course to do that) or to introduce the concept on its own without it being a natural application of a mathematical topic being addressed. 


From a broader perspective, at most schools, college algebra is the prerequisite for introductory statistics, despite the fact that virtually none of the ideas and algebraic techniques in traditional college algebra courses is relevant to introductory statistics.  As a consequence, introductory statistics courses are typically much too crowded and rushed and many students are poorly served by them.  Furthermore, those courses are extremely challenging intellectual experiences for almost all students – the statistical ideas are very varied and exceptionally non-intuitive.  Yet, we expect that students will master the wide variety of techniques, learn and understand the underlying statistical principles, and be able to transfer that knowledge and understanding to courses in many other fields.  In comparison, think about the relatively simple problem of finding the equation of a line.  It is introduced in pre-algebra classes, treated in depth in Algebra I, again in Algebra II, once more in College Algebra, and still again in Precalculus.  Nevertheless, despite all the repetition, many students in calculus still have trouble finding the equation of the tangent line to a curve at a point.    

If a significant amount of statistical thinking can appear in the prerequisite college algebra course, as we have done, we believe that it can make the subsequent statistics course much more reasonable and more successful for many of the students.
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