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Abstract:  The authors consider the use of a computer graphics simulation of the radioactive decay model in a precalculus setting.  The use of such an approach allows the introduction of some probabilistic ideas to reinforce the usual deterministic approach to the topic, as well as to provide a different perspective.  It also provides an opportunity to apply some ideas and methods from data analysis to analyze the functional behavior of the random points generated by the simulations. 
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Introduction

According to Ruma Falk and Clifford Konold [2], "In this century, probability has become an integral component of virtually every area of thought.  We expect that understanding probability will be as important in the 21st century as mastering elementary arithmetic is in the present century."  These ideas clearly reinforce the NCTM's Standards' call for the inclusion of statistics and probability in the mathematics curriculum.  Yet, the worst way that this can be achieved is by introducing independent units or full courses on probability or statistics and otherwise letting the topics die.  Unfortunately, this is what happens all too often at the college level where courses in probability and statistics tend to be removed from the rest of the undergraduate curriculum.  Rather, it is essential that we interweave these themes throughout the mathematics curriculum to demonstrate to our students that such ideas are an integral part of the mathematical fabric.


In a recent article, Schultz and Rubenstein [6] make a strong case for integrating statistical ideas throughout the curriculum.  One of the most effective ways that this goal can be achieved is through the use of random simulations of a variety of mathematical processes.  Such simulations not only provide a vehicle for including statistical ideas into mathematics, but they also provide a very different and, in some ways, more practical and experimental perspective on mathematics.  They also provide the opportunity to make mathematics a more exciting and dynamic experience for the students.


In a previous article [4], the present authors described a series of random simulations that can be introduced in calculus to being a probabilistic perspective to many of the standard topics in the course.  In [5], they developed a number of mathematical models for waiting time situations and discussed implementing them via random computer simulations.  Many of the same ideas on random simulations pervade the approach to motivating and understanding the basic principles of data analysis and probability being developed as part of the NSF-funded Math Modeling/PreCalculus Reform Project [3].  In the present article, we consider another standard mathematical application, that of radioactive decay, but approach it likewise from the point of view of random simulations.

Simulating Radioactive Decay

Suppose we start with an initial quantity Q0 of some radioactive material which decays with half-life L.  Thus, the amount of radioactive material remaining after t time periods is given by the exponential model:







Q(t)  =  Q0 e-kt
where the decay constant k must be positive.  Further, when t = L, the amount of radioactive material remaining is






Q(L)  =  Q0 e-kL  =  ½ Q0
so that






-k  =  (1/L) ln(½)  =  ln(½)1/L.

Therefore, after t time periods, for any t,
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Q(t)  =  Q0 e             =  Q0 (½)t/L .  


So far, this is just the usual deterministic mathematical approach to the subject.  Now, let's see how we can work in some probabilistic ideas.  The quantity of radioactive material remaining after one time period is 






Q(1)  =  Q0 e-k  =  Q0 (½)1/L .

Consequently, the fraction of the radioactive material that has decayed during this first time period is




[Q0 - Q(1)]/Q0  =  [ Q0 - Q0 (½)1/L ]/Q0   







 =  1 - (½)1/L.

Since this fraction of all the radioactive atoms decay during the first time interval (and during any later time interval of the same length), then the probability that any single radioactive atom will decay during this time interval is also 






P(decay)  =  1 - (½)1/L .

For instance, if the half-life is L = 6 years, then approximately 10.9% of the radioactive material will decay each year and so the probability that any single atom will decay is likewise .109.


It is this fact that allows us to view radioactive decay on a random simulation basis via a computer graphics program.  For any given choice for the half-life L, the program begins with 80 radioactive atoms that are displayed in red across the top of the screen.  During each successive time interval (from t = 1 to t = 40), the program checks each radioactive atom remaining and uses the associated probability of decay to decide if that atom has decayed during the time period.  If so, that atom becomes a stable atom displayed in a different color thereafter.  The display is also accompanied by a ticking sound to simulate the decaying output from a Geiger counter.


In Figures 1 and 2, we show the results of two separate computer "runs" of the simulation, each based on the same half-life of 5 time periods, say years.  In each case, the graphical display, based on the random decisions for each individual radioactive atom at each of 40 successive time periods (shown as the 40 successive horizontal rows), results in very different patterns of outcomes in terms of which atoms decayed early and which remained radioactive for a longer time.  (Since the displays reprinted here are in black and white, the radioactive atoms are shown in black and the stable atoms are uncolored so that the results are easily distinguishable.)  Thus, in the two figures, the vertical columns represent those atoms which did not decay; the length of each column simply indicates how long it took for a particular atom to undergo decay.  Repeated runs of this program invariably produce totally different sets of outcomes and so reinforce these ideas.


In addition, the numerical display at the bottom indicates the number of radioactive atoms remaining out of the original 80 after each time period.  From this, it is possible to observe that, in each time period, the number decreases by roughly the same fraction, a characteristic of the exponential function.  Thus, for instance, in Figure 1, notice that after five time periods, the number of radioactive atoms left is down to 39, about ½ of the original 80.  Similarly, after 10 time periods, the number is down to 19, again about ½ of the 39.  The same numerical pattern holds approximately between any time t and t+5.  Thus, on a numerical basis, we can deduce that the radioactive decay process is exponential in nature.  


Further, an accompanying graphics screen plots the number of radioactive atoms remaining at the end of each time period as a function of time t, as shown in Figure 3.  The overall result is typically that of roughly a decaying exponential function.  In addition, the program superimposes the theoretical exponential decay curve, in this case, 


Q  =  80⋅(½)t/5  =  80⋅e-.1386t
over the "actual" simulated display.  This allows the students see that the overall process is indeed a good fit to the exponential decay model, though the particular numbers change slightly from one run to the next.  It is also helpful for them to see how changes in the half-life L affect the rate of decay.  

Pedagogical Considerations

Such a program can be used effectively in front of a class on a demonstration basis.  It can also be used to provide some "experimental data", the actual numbers of radioactive atoms remaining after each time period, which can then be analyzed in the sense of curve fitting to obtain the best exponential fit to the data.  Alternatively, the program can be used by the students individually in a computer lab environment.  In the latter case, it is particularly effective to have each student personally run the simulation with the same half life L, record the values obtained, and perform a curve fitting analysis to determine the best fit to his or her data.  (For the "actual" values obtained in Figure 1, the best fit exponential function is Q = 77.411⋅(.880)t  =  77.411⋅e-.127t with correlation coefficient r = -.993;  for the values in Figure 2, the corresponding result is Q = 70.790⋅(.873)t  =  70.790⋅e-.136t with r = -.991.)


Once each member of the class has completed such an analysis,  all of their individual results can be compiled on the blackboard to allow the group to see how they all tend to obtain very similar functions for the best exponential fit and that each one is close to the theoretical formula, Q = 80⋅(½)t/L.  In addition, it is also desirable to average the individual results obtained for each parameter to demonstrate how the mean dilutes the effects of random variation.


We note that some similar ideas were developed as part of Georgetown University's Project for Math Modeling with Discrete Mathematics under the direction of James Sandefur.  A set of classroom activities materials on this theme was prepared by Guy Brandenburg [1] of Francis Junior High School in Washington DC.  This package also includes a short program for the TI 81 graphing calculator written by Sandefur.

Conclusions

The mathematics we typically use to describe exponential decay applies "in the large" in the sense of predicting the large-scale behavior of the situation.  It does not predict on an individual basis.  Yet, on the average, random events do, in their totality, fall into predictable patterns.  This is a very important point for our students to realize.


More and more, scientists are coming to view the world as statistical (or stochastic) in nature.  It is simulations such as this one that mirror real world effects and yet justify the value of deterministic mathematics in describing the large scale effects.  At the same time, they can be used to bring the mathematics to life.

Note  The program described in this article is written in Basic for IBM and compatible computers.  Interested readers should contact the authors for information on its availability.
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