 SEQ CHAPTER \h \r 1
Riemann Sums and the Exponential Function

Every standard calculus textbook contains the derivations for the definite integral of x and x2 using Riemann sums based on the known results for the sums of the first k integers and the first k squares of the integers.  Now that some of the reform calculus projects have moved the exponential function "up front" because of its importance, it is nice to have a comparable derivation for its definite integral.  In the process, we can re-emphasize some important ideas.


Let [a,b] be any interval and consider a uniform partition of the interval into n subdivisions of size h = Δx = (b - a)/n.  Therefore,
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using the sum of the first n terms of a geometric progression and the fact that b = a + nh.  Therefore, in the limit as n -→ ∞ and hence h -→ 0, we obtain
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Recognizing that the limit as h goes to 0 of the term in the brackets is precisely the definition of the derivative of ex at x = 0, we immediately conclude that


⌠ b


 ADVANCE \l 2│   ex dx   = eb - ea.
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