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Introduction ADVANCE \d 7

Students in introductory statistics courses are often asked to accept many statements and procedures on faith since the mathematical justification is usually far too sophisticated for them to comprehend.  In large measure, this can be attributed to the nature of statistics, which is quite unlike most other undergraduate mathematics offerings.  In other courses, the underlying theory applies directly to the object in question, whether it is a function being optimized or integrated, a system of linear equations being solved or a differential equation being solved. 


 In statistics, however, the theory applies to some unseen underlying population, not to the sample at hand.  In fact, the sample is only used to make a statistical inference about the unknown population.  Unfortunately, students see just the sample, but have no direct way to perceive the population or to develop any deep understanding of its properties.  


Moreover, the fundamental notion in inferential statistics is variablility based on the sample drawn from the population.  In most traditional approaches, the emphasis in an introductory course has all too often been on the mechanics of performing a hypothesis test or constructing a confidence interval.  As such, the students are usually given the summary statistics for a set of data (rarely the actual data values themselves) and asked to perform an inferential procedure.  At best, some preliminary theoretical discussion may be covered in class, but that is usually very quickly forgotten in the rush to complete the mechanical solution to the problem.  When students do work with the actual data, even data they have personally collected, it is still just one possible sample on which they apply the appropriate (we hope) procedures.  It is therefore not surprising that many students come out of an introductory statistics course having mastered a series of computational procedures, but with relatively little statistical understanding.


It would be desirable to consider cases where the students see many different samples and thus see the effects on the associated sampling distribution.  However, it is just too difficult and too time-consuming to try to do something with many different samples in front of a class.  And, in the few cases where this is done, it is much more likely that the class becomes bogged down in the details of enumerating and analyzing all possible samples, so that the students do not see the overall patterns.


Fortunately, most of the critical topics in statistical inference can be dramatically presented using computer graphics simulations which allow the students to visualize the underlying statistical populations and so enhance their understanding of the statistical concepts and methods.  


Even as simple an experiment as flipping a set of two or three coins is difficult for many students in terms of predicting the type of results which will occur.  We can derive the associated probabilities theoretically, but many students are not convinced about the accuracy of the results.  Computer simulations can be very valuable in conveying this conviction.  


At a simplistic level, a simulation can be used to randomly generate the results of repeated coin flips (or the outcomes of other experiments).  The actual outcomes might be displayed individually in the form: HH, HT, HH, TH, HT, ..., say, or a summary of the simulated results might be shown in a frequency table.  Unfortunately, most students find it difficult to abstract any usable pattern from lists of individual outcomes or even from a summary table.  The human mind has evolved to process information visually;  processing symbolic and numerical information is not a natural mechanism and we should not expect all students to be good at it.


A computer graphics program which simulates the experiment repeatedly and displays the results visually is far more effective.  Students are able, visually, to detect the resulting patterns and so develop a feel for the accuracy of the results.  Simultaneously, it provides them with the conviction that the theory indeed agrees with reality.  Numerous articles, including [2] and other papers in this volume, describe such simulations for a variety of probability experiments including a binomial simulation based on arbitrary n and p.


The same type of approach can be applied throughout an introductory statistics course to simulate graphically a wide variety of discrete and continuous distributions including, for example, the normal distribution.  In the present article, we will discuss a variety of such simulations including:



the distribution of sample means; 



other sampling distributions (such as those of the median and the mode);



confidence intervals;



hypothesis tests;



the chi-square distribution;



the F-distribution associated with analysis of variance;



regression and correlation analysis.  

Simulations of Sampling Distributions

Various authors ([1,2,3] as well as several in this volume) have described how the distribution of sample means can be simulated extremely effectively using computer graphics.  Typically, students can select any of a variety of underlying populations, sample size and number of samples.  In one such implementation, the program randomly generates repeated samples of the given size, calculates and then displays the mean of each sample.  See Figures 1 and 2 for results based on samples of sizes n = 4 and n = 25 drawn from a skewed population.  From such explorations and the accompanying geometric display, the students in an introductory statistics course are able to predict the conclusions of the Central Limit Theorem and the properties of the sampling distribution of the mean based exclusively on the visual displays.  The only thing that they need to be told is that n = 31 has been found empirically as the minimum sample size needed to be assured of normality for most underlying populations.  Of course, how large n must be depends strongly on the shape of the underlying distribution.  Computer graphics prosent an ideal tool for experimenting with different values of n and different populations.  For instance, students can see that n = 1 is adequate if the population is normal; that n = 12 is usually accepted as large enough if the population is uniform; and that n = 100 may be needed if the population is highly skewed as with the exponential distribution.


In a companion article [4], the present authors describe the use of graphics simulations to investigate the properties of other sampling distributions which often arise in an introductory statistics course.  This includes the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions and the distribution of sample variances.


It is also possible to consider the sampling distributions associated with other statistics.  For example, we can consider the sampling distribution of the median and use an appropriate computer graphics simulation to experiment with its properties.  In Figures 3 and 4, we show the results of such a program when samples of sizes n = 4 and 20 respectively are drawn from an underlying U-shaped population and the sample median for each sample is calculated and displayed.  


A particularly effective use of such a program is to allow the students to conduct their own investigations of this (and related) sampling distributions on an individual or small group basis.  Having seen how such an analysis proceeds with the distribution of sample means, they can ask themselves the comparable questions about the sampling distribution:  what is its shape?  what is its mean?  and what is its standard deviation?  The students are then able to make some conjectures based on the visual and accompanying numerical displays.  In fact, individual students can be assigned different projects of this nature using a variety of underlying populations and a variety of sampling distributions such as those for the median, the mode, the midrange or even the variance.  This type of activity is extremely desirable for giving students a feel for discovering and developing a mathematical theory on their own.  More importantly, by repeating the procedure used in developing the key ideas for the distribution of sample means in a parallel context, the students achieve a far better understanding of what the first exploration accomplished.  Otherwise, the ideas presented on the Central Limit Theorem are not reinforced and hence do not make a sufficiently deep impression on all students.

Estimation

The idea of graphical simulations can also be applied to many other core topics in inferential statistics to increase student understanding.  


We begin with estimation of the unknown mean μ for a population.  A 95% confidence interval for the mean should have a 95% chance of containing μ or, equivalently, 95% of the confidence intervals so constructed should contain μ.  For most of the students in introductory statistics, this statement represents, at best, nothing more than an act of faith.  They do not fully appreciate the fact that the confidence interval constructed will correctly contain μ with probability .95.  There is simply no effective way to construct a large variety of different confidence intervals based on different sample data to see whether the theoretical considerations actually make sense.  Instead, the students too often perform the appropriate manipulations to calculate the correct answer to any such problem in a purely mechanical fashion.


However, computer usage is ideal for this type of repeated calculation.  In Figure 5, we show the results of a program which generates repeated random samples from a given underlying population, constructs the corresponding confidence intervals and displays the results visually.  This graphical simulation provides an especially powerful tool to translate the statistical theory and predictions into ideas that the students can visualize and hence comprehend.


The result shown in Figure 5 is based on repeated random samples of size n = 31 from a selected underlying population.  Each sample is used to construct a 90% confidence interval for the mean.  The program constructs and draws almost 100 successive confidence intervals on each run (until the screen is filled).  Notice that the location of the sample mean EQ \O(¯,x) about which each confidence interval is centered is also displayed.  The vertical line indicates the location of the population mean μ.  Further, whenever a particular confidence interval does not contain μ, the program displays the corresponding line in a different color for effect.  The numerical results corresponding to Figure 5 then show that  85 of the 96 confidence intervals, or 89%, contain μ.  Repeated runs of such a program can be used to demonstrate that, in the long run, the results will more or less average out to the predicted percentage of 90%.  In fact, a useful computer laboratory exercise is to have each student run the program simultaneously and then have them average the percentage of intervals which contain the true mean μ.


In addition, within each run of the program, the lines drawn for the individual confidence intervals have different lengths.  This is because the length of each interval is based on the size of the sample standard deviation.  Thus, the program provides a visual dimension for seeing the effects of the standard deviation on the outcome of an estimation problem.  Similarly, if a different confidence level, say 98%, is used, then it is visually clear that most of the confidence intervals drawn are longer than those shown in Figure 5.  Moreover, very few of these confidence intervals do not contain μ.  Thus, the students see that, by increasing the confidence level, we achieve a much greater likelihood of the confidence interval containing μ.  Perhaps most importantly, such a program can be used to give the students a greater appreciation for the nature of inferential statistics:  any statistical result is based on the data from one particular sample and the result will change if a different sample is used.


Totally comparable results can be achieved for confidence intervals for proportions.  The primary difference is that the user is able to define the population proportion π of the underlying population.

Hypothesis Testing

We next consider hypothesis testing for means.  Again, this is a procedure where the key ideas are, at best, usually accepted by most students on faith and the corresponding problems are handled mechanically rather than with any statistical understanding.  For instance, if the significance level is .05, they often do not appreciate the fact that only 5% of all possible sample means will fall into the rejection region when Ho is true.  However, as with confidence intervals, these ideas can be demonstrated very effectively with an appropriate graphics simulation.  


We illustrate the results of such a program in Figure 6 based on a significance level of α  = .05 and a one-tailed test.  The theoretical sampling distribution, which is approximately normal since the sample size used is n = 36, is drawn first.  The corresponding critical value for the statistic is drawn as the tall vertical line.  Finally, 100 random samples of size 36 are generated, the sample mean of each is calculated and drawn as a shorter vertical line.  In the particular run of this program displayed in Figure 6, only 4 of the 100 sample means fell in the rejection region.  


When this program is used repeatedly, the students see that the proportion of sample means that fall inside the rejection region comes out, in the long run, to be very close to the value of α .  Further, they see that most of the "rejects" are relatively close to the critical value.  In addition, by examining closely the pattern in which the sample means fall and noticing where they are dense compared with where they are sparse, students can again see how the sample means are roughly normally distributed.  They also begin to appreciate the fact that they are really dealing with just one possible sample when they perform a typical hypothesis test and can better assess the significance of the results of that test.  In turn, this gives them a better understanding of what hypothesis testing is all about.


As with confidence intervals, it is also possible to treat hypothesis tests on the population proportion π in a totally analogous manner, but we will not indicate any of the details here.

Chi-Square Analysis

Our next application concerns chi-square analysis for contingency tables which is another topic that students often end up handling in a purely manipulative manner with little real understanding.  Essentially, they are memorize the fact that the chi-square statistic, a number generated by the result of a certain process or formula or computer routine, follows a chi-square distribution with a certain number of degrees of freedom, but they rarely gain any appreciation of what is actually happening.  Using software to perform the calculations for a given contingency table frees them from the drudgery of doing the computations by hand, but does not convey any real understanding of what the procedure is all about or what is signifies.


In the authors' graphics simulation, the user is able to define the expected frequencies for a contingency table.  Then, for a given value for the sample size n, the program randomly generates samples of size n and assigns each sample entry to the appropriate cell in the table based on the individual frequencies or probabilities.  Each resulting contingency table is then used to calculate the corresponding value for the chi-square statistic and the results of the repeated simulations are plotted, as shown in Figure 7.  As the successive values are graphed, the students are able to see how the values fall into the pattern for a chi-square distribution.  This is important for them to see visually because many students expect that everything behaves according to a normal distribution pattern.  They can also see how only a relatively few of the simulated chi-square values actually exceed the critical value and so lead to a rejection of the null hypothesis assuming that Ho is true.


The program also provides the opportunity to turn chi-square analysis into an exploratory exercise in which the students can see the effects of using different subtotals (and consequently a different set of defining probabilities) in the underlying population. 

Analysis of Variance

Computer graphics simulations can also be applied to analysis of variance, another heavily computational topic that students end up treating in a purely mechanical way with no real statistical understanding.  Again, using software that only performs the ANOVA calculations for a set of sample data does not lead to comprehension, but only to answers.  


In the authors' simulation, the user can define the value of μ to be tested, the number of treatments and the number of observations per treatment.  The program randomly generates repeated samples from a normally distributed population having the indicated mean μ, calculates the corresponding value of the F statistic for each set of samplea, and plots it.  The results of a typical run are shown in Figure 8.


As with the previous discussion on chi-square analysis, this program provides the students with an understanding of the shape of the F-distribution.  It forces them to realize, once more, that the data they use in any problem is just one possible set of sample data.

Linear Regression and Correlation

Finally, we consider the notions of linear regression and correlation.  Again, students rarely appreciate the fact that the data they use to construct a regression equation or calculate the correlation coefficient is just one possible set of bivariate data.  Rather, they get so involved in performing the calculations, even with computational tools, that they lose sight of the underlying statistical ideas.  These procedures, though, also lend themselves to graphical simulations to enhance the concepts visually.  In Figure 9, we show the results from a program which draws repeated samples of size n = 4 from an underlying bivariate population, calculates the regression line for each sample and displays it graphically.  For comparison, the regression line for the population is also shown and the point corresponding to the two means, μx and μy , is highlighted by the circle.  The students quickly see that each sample gives rise to a different regression line, though most of them remain relatively close to the population regression line and most of them pass fairly close to the indicated point.  However, it is not unlikely to obtain several sample lines which lie at a sharp angle from the population line, and so regression analysis based on small samples is seen to be highly suspect.  On the other hand, when larger sample sizes are used, the resulting sample regression lines usually lie very close to the population line and so support the notion that increased sample size makes for far better predictions.


Furthermore, by examining the various sample regression lines, it is clear that they will eventually diverge from the population regression line and so the display provides an excellent argument for the dangers of extrapolating beyond the set of data values.  Further, it also provides a clear demonstration of the adjustment necessary in constructing prediction intervals for the value of y based on a given value of x using the regression equation.  The further x is from EQ \O(¯,x), the larger the adjustment must be.


In a similar direction, it is also possible to perform a graphical simulation for the correlation coefficient.  In Figure 10, we show the results of such a program where the vertical line corresponds to the population correlation coefficient ρ and the distribution of sample correlation coefficients are shown based on samples of size n = 4.  For such a small value, the resulting correlation coefficients can vary significantly about the population value;  when the sample size is increased, it becomes visually evident that the sample values cluster ever more closely about the population value although distribution is not normal.

Implementation

The authors use the programs described here primarily on an in-class demonstration basis to motivate and explain statistical ideas.  With the use of a LCD display panel, the PC graphical output is easily visible to all students in the class.  In addition, several of the programs are used as the basis for individual investigation projects;  students are required to conduct a study of the properties of a sampling distribution and write a formal report containing graphical output and their conclusions based on it.


Moreover, the authors have found that the visual images generated by the computer tend to "stick" in students' minds.  They often refer back to the computer pictures of such-and-such a simulation.  Consequently, it is possible to capitalize on these solid images by referring back to them on an on-going basis in class when discussing subsequent ideas or going over particular problems at the board.

Conclusions

The common thread running through the use of each of these graphical simulations is that they provide a visual dimension which allows a student to achieve a much firmer grasp of the statistical notions.  It is no longer necessary for students to accept statistical facts purely on faith or blind memorization and worry only about mastering statistical procedures mechanically.  Even in low-level introductory statistics courses, students can develop understanding of the statistical theory without actually studying the theory formally.
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