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Using the Sum of the Squares


Using the Sum of the Squares

The idea of fitting functions to data is one of the new topics in the mathematics curriculum, especially at the college algebra and precalculus levels, students find highly motivating and useful.  These methods allow us to show how mathematics is actually applied in realistic situations arising in all areas of human endeavor.  

In the process of applying these ideas, however, some fairly substantial and sophisticated issues arise, most notably the questions of deciding how well a given function fits the data and how to compare the goodness of one fit to another.  The simplistic answer, and often the wrong answer, particularly to the second of these questions, is to use the value of the correlation coefficient that is provided by graphing calculators and by software packages such as Excel.  The catch is that the correlation coefficient only measures how well a regression line fits a set of data;  it says nothing directly about how well a nonlinear function fits the data.  The usual process involved in finding the exponential, logarithmic or power regression function involves: (1) transforming the set of data to linearize it; (2) fitting a line to the transformed data (which is where the correlation coefficient that is reported comes in); and (3) undoing the transformation to obtain the desired nonlinear function.  As a consequence, the temptation to use the correlation coefficient to decide which function from among a group of different functions is the best fit to a set of data often leads to a misleading conclusion.
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Instead, a much better approach is to use the notion of the sum of the squares, which is actually the basis for the entire structure of regression analysis.  Suppose we have a set of (x, y) data, as shown in Figure 1 where the pattern is roughly linear.  We measure how well the line in Figure 1 fits the data – that is, how close it comes to all of the data points – by calculating the vertical distances between each of the data points and the line, squaring each of these deviations (to avoid complications with positive and negative values), and summing them.  The line of best fit is the one for which this sum of the squares is minimum;  there is precisely one line,  the regression line, for which this is so.  The equation of this line is typically found using multivariate calculus to minimize the sum of the squares as a function of the two parameters a and b in the equation of a line 
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;  in a previous article [1], the authors show how to derive this equation using only algebra.  
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n a similar way, we can measure how well a nonlinear function, such as the one shown in Figure 2, fits a set of data by likewise calculating the sum of the squares of the vertical deviations.  The smaller the sum of the squares, the better the fit.  In fact, some software packages, such as Mathematica and Maple, apply this criterion directly using numerical methods rather than the transformation approach outlined above and often produce a better fit to the data than is provided by calculators and spreadsheets.  Either way, it is fairly evident that the smaller the value for the sum of the squares, the better the associated fit is to the given data.  Thus, this provides a simple criterion for answering the second question posed at the start of this article. 

Of course, there are some catches in this.  The presence of an outlier in the data can contribute greatly to the value obtained for the sum of the squares and so provide a distorted view of how well a particular function fits the data.  Moreover, especially from the point of view of students, the sum of the squares is not calculated automatically on their calculators or spreadsheet, so there can be some additional work entailed in their using it as the criterion.  One way that the authors sidestep this complication is to provide their students with an Excel template in which the students merely enter their data values.  The program produces not only the value for the sum of the squares associated with each of the possible fits, but also all of the associated graphs (including the linear fit to the original data, the linear fit to the transformed data associated with an exponential fit, the exponential fit to the original data, the linear fit to the transformed data associated with a power fit, and the exponential fit to the original data).  Using this spreadsheet, the students are responsible only for making informed decisions based on the graphical and numerical output, not for performing routine calculations.  As such, they very quickly become comfortable interpreting and comparing values for the sum of the squares.
The value for the sum of the squares can certainly be found easily on a calculator.  For instance, we outline the process associated with the TI 83/84 family.  Suppose the x-values are stored in list L1 and the y-values in list L2 and that you have requested a particular regression function that has been calculated and stored, say in 
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 to calculate and store the values of the function corresponding to each of the x-values – in the EDIT menu, scroll above the line to the 
[image: image4.wmf]3

L

 title, enter 
[image: image5.wmf]1

Y

 (find it under the VARS – Y-VARS-Function menu) followed by (
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), and press ENTER.   Then use 
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 to calculate the squares of all the deviations – scroll above the line to the L4 title and enter 
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.  To obtain the value for the sum of the squares, simply press STAT-CALC, select the first option: 1-Var-Stats, enter 
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 and press Enter;  the sum of the values in this list (which are the squares) is shown as the result of 
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.  Alternatively, you can get the sum of the squares by using the LIST-MATH menu to request sum( and then entering 
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 to get the command sum(
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).  The authors prefer the second approach to avoid confusing students who might be misled by having to take the value of 
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 when they want the sum of the “squares” and the following output entry is labeled  
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Some Other Uses of the Sum of the Squares
1.  Fitting a Sinusoidal Function We next look at some other uses of the sum of the squares, both at the college algebra/precalculus levels and at the calculus level.  We begin with a project assignment that we use in both college algebra and precalculus classes where, in the process of using the sinusoidal functions as models for periodic phenomena, we ask each student to select a city anywhere in the world, find data on the historic average daytime high temperature over a year, and use the data to construct a sinusoidal function of the form

T  =  A + B sin (
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that fits the data.  The independent variable t stands for the day of the year – that is, January 1 is day 
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, January 2 is 
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, … and December 31 is day 
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.  The students are then asked to “adjust” any of the parameters in their function that are reasonable (meaning, you can’t extend or shorten the year) to improve the fit, as measured both by eyeing the graphical output and by the value of the correlation coefficient.  To assist them in doing this, we provide an Excel file in which they enter their data values and their values for the four parameters A, B, C and D; the spreadsheet instantly produces the graph of their function superimposed over the data and the value of the associated sum of the squares. With this tool, the task of getting the best fit by adjusting the parameters rapidly becomes almost a competition to see who can get the greatest improvement or who can reduce the value for the sum of the squares to the smallest possible value.  Finally, the students are asked to use their best function to answer a series of predictive questions that they raise in the context of the city of their choice.
To illustrate what is entailed, suppose we select Tokyo.  Using the Averages & Records option to get historical data at weather.com, we find the following values for the average high temperatures in Tokyo on the 1st and the 15th of each month, 
	t
	1
	15
	32
	46
	60
	74
	91
	105
	121
	135
	152
	166
	182
	196
	213
	227
	244
	258
	274
	288
	305

	T
	50
	49
	48
	49
	51
	54
	60
	64
	69
	73
	75
	77
	80
	83
	87
	87
	84
	80
	74
	70
	65

	319
	335
	349
	365

	61
	57
	53
	49


[image: image69.wmf]To construct a sinusoidal function to fit this data, most students typically reason as follows.  The temperature values range from a minimum of 
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, so that the midline is the average, or 67.5(.  Furthermore, the difference between the maximum and the midline is 19.5, which is the same as the difference between the midline and the minimum, so that the amplitude of the function is 19.5.  Clearly, the cycle repeats annually, so the period C is 365 days.  Finally, for a cosine function, the phase shift corresponds to the first time that the function reaches its maximum;  for the Tokyo temperature data, the maximum of 87 occurs on the 213th day and on the 227th day;  some students might conclude that 
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 corresponding to the first time the temperature reaches this level, while others might average the two dates to get 
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. (Alternatively, if they opt to use the sine instead, the phase shift corresponds to the first time that the function passes the midline while increasing, which is equivalent to the time midway between the first minimum and the following maximum.)  Using the cosine function, many would likely get the function
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This function is shown superimposed over the data in Figure 3, where we observe that it is a reasonably good fit to the data. The value for the sum of the squares associated with this function is 276.78.  
However, in examining the graph, it is clear that the fit could be improved if the curve were shifted somewhat to the left, which entails decreasing the phase shift.  Suppose we try the other value for 
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.  We then get the function shown in Figure 4, with an associated sum of the squares of 96.79; both visually and numerically, this is a considerably better fit to the data.  
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Can we improve on this still further?  Well, if you look carefully at Figure 4, you might decide that many of the points are slightly below the curve, so we might want to decrease either the amplitude or the midline a little.  If we decrease the amplitude B from 19.5 to 19.3, say, then we get 91.85 for the sum of the squares; if we make it 19.2, then we get 89.76; if we reduce it to 19, we get 86.34.  By the time we reduce the amplitude to 18.3, we get a sum of the squares of 82.44.  However, if B = 18.2, the resulting value is 82.90 and we have passed the minimum.
What if we change the midline 
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 also?   If we use 67.2, say, then we get a sum of the squares equal to 72.85.   If we use 66.5, then the sum of the squares is 66.91.  If we use 66.7, the sum of the squares is 66.11 and, to one decimal place accuracy for the parameter values, this appears to be as small as we can get.
2.  Polynomial Approximations to Sinusoidal Functions We next consider another instance where the sum of the squares, combined with technological support, becomes a useful pedagogical tool.  In the process of introducing the sine and cosine functions as mathematical models in both precalculus and college algebra courses, we find that it is very effective to introduce as well the notion of approximating the sinusoidal functions with polynomials as a precursor to Taylor polynomials in calculus.  On the one hand, this gives the opportunity to reinforce some of the behavioral characteristics of the sinusoidal functions while simultaneously reminding the students of some key characteristics of polynomials.  On the other hand, we believe it is important to acquaint students with the notion of approximation, since it is one of the most important concepts in modern mathematics.  And, we find that the students really get caught up in these ideas.

To do this, we start with the graph of the sine function near the origin, and point out that the curve looks remarkably like a linear function.  We then select some points on the sine curve very close to the origin and find the line that fits those points;  it is essentially 
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, so that we have an initial estimate of 
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.  In a similar way, the graph of the cosine function near the origin looks like a quadratic function with a negative leading coefficient;  also the vertex is at a height of 
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.  We can then select a number of points very close to 
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 and fit a quadratic function to these points;  we typically get something quite close to 
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, so that 
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We can continue this process to generate a cubic approximation to the sine and a quartic approximation to the cosine, using the polynomial fitting routines of a graphing calculator.  We can go further to generate a fifth degree approximation to the sine and a sixth degree approximation to the cosine using the curve fitting routines in Excel. The problem is that the further we go, the more inconclusive the values for the coefficients become and the values produced dependent very much on the choice of points.

Alternatively, in a precalculus course where the students have seen some basic trigonometric identities, we can reinforce the use of some of those identities with the following line of reasoning.  Using the double angle formula
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we can write, substituting 2x with x,
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which is clearly somewhat different from the cubic Taylor approximation
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Subsequent approximations to the sine and cosine appear to involve coefficients in which the denominators are integers.  To investigate this notion visually, we have developed a dynamic interactive spreadsheet in Excel that can be used either for classroom demonstrations or for individual student use to investigate the ideas independently.  The spreadsheet allows the user to construct approximations up to 6th degree in the form
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for both the sine and the cosine.  The parameters B, C, …, G are all integers and can be selected by means of a set of sliders that allow for immediate input and virtually instantaneous changes in the graphical display.  If we are constructing approximations to the sine function, we would point out that, as we enlarge a window about the origin symmetrically in both directions, additional pairs of turning points come into view.  This suggests that the degree of each successive approximation increases by two and therefore all polynomial approximations to the sine function should be odd polynomials.  In turn, this suggests that all coefficients of the even power terms should be zero, so that we would start with
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If the student then chooses 
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which is not quite the third degree Taylor approximation. The graph of this approximation with 
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 is shown in Figure 5, and we see that it is actually quite accurate for x between roughly -2.5 and 2.5.  As an aid in deciding how well the polynomial fits the sine function, the spreadsheet also provides the sum of the squares.  Between -2.5 and 2.5, the value is 0.26, which indicates very good agreement based on about 90 equally spaced points in this interval.

A little exploration with other values for D is quite interesting.  For instance, with 
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, we get a sum of the squares of 0.55, which is considerably better.  With 
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 (which is -3!), we get a sum of the squares of 3.74, which is actually worse.  And with 
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, the value is 13.59, so the sum of the squares is growing quite rapidly as we move further away from 
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. Also, with 
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, the value for the sum of the squares is 1.28, so among integer values for D, the minimum appears to correspond to 
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 (provided the other parameter values are the same).
Incidentally, a small change in the value for F (which occurs in the fifth degree term) creates a dramatic effect.  Suppose we still take 
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 and 
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, but now change F from 0 to F = 10, so that the coefficient is 1/10 instead of 0. The resulting graphs are shown in Figure 6 and the corresponding value for the sum of the squares has jumped from 0.26 to 701.52 on the same interval [-2.5, 2.5].  (Of course, if we restrict our attention to a smaller interval over which the polynomial appears to be indistinguishable from the sine curve, say [-0.8, 0.8], then the sum of the squares drops to 0.01.)  As we increase the value for F, say to 50, we get a sum of the squares value of 20.77 using the original interval [-2.5, 2.5];  for 
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, we get 3.77;  for 
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, we get 2.90;  for 
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 (which is equal to 5!), we get 2.27; and for 
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, we get 1.80.  The corresponding graph with 
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 is shown in Figure 7.   

For those readers who are wondering why the sum of the squares can come out smaller for a non-optimum set of coefficients in the Taylor polynomial sense, the reason is quite simple.  The Taylor approximation is based solely on matching a polynomial to a function with a very high level of accuracy at a single point and then seeing how far from that point the two agree.  A somewhat different polynomial may not be quite as good a fit at that particular point, but may not diverge from the polynomial quite as fast or as much as the Taylor polynomial does.  Because the sum of the squares depends on the entire interval selected and on the number of points used within that interval, it is possible (and in some of these cases it happens) that the value obtained is actually smaller than the sum of the squares associated with the Taylor polynomial.  In looking at Figure 5, say, it is evident that the polynomial and the function agree well only between roughly -1.8 and 1.8.  For that interval, the corresponding value for the sum of the squares is 0.00004, which indicates a remarkable level of agreement.  
3.  Derivatives of Exponential Functions We now consider one last illustration in calculus of the use of the sum of the squares for measuring how well an approximation fits a function.  We look at the issue of motivating the derivative of the exponential function.  Prior to that, we presume that the students have seen the notion of the derivative at a point via the Newton quotient and are familiar with the idea of the graphical derivative of a function.  We use another interactive spreadsheet in which the user can supply the base b of an exponential function 
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 via a slider and the spreadsheet displays both the function and the associated derivative function.  As they adjust the value for b, it is clear that for some values of b, say 
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, the derivative is below the function and for other values of b, say 
[image: image60.wmf]3

b

=

, the derivative is above the function. It then becomes natural to raise the question about whether there is some particular value of b for which the function and its derivative are indistinguishable.   Clearly, one way to conduct this investigation is on a purely graphical level, though it can be difficult at times to decide which derivative function is closer to its associated exponential curve than another is purely on a visual basis.  As an aid, the spreadsheet provides the value for the associated sum of the squares.  For instance, in Figure 8, we show the results for 
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, and there appears to be very good match between the graph of the derivative and the graph of the exponential function.  The associated sum of the squares is equal to 10.940, corresponding to the interval [0, 3] with 100 points.  In comparison, if 
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, the sum of the squares is 3.936.  If 
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, the sum of the squares is 0.304 and if 
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, the sum of the squares is 0.00277 and the fit is virtually perfect.  However, if we extend this still further and try 
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 (compared to 2.718281828…), we find that the sum of the squares is down to 0.0000743. 

Note  All of the Excel spreadsheets described, as well as many others, can be accessed and downloaded from the first author’s webpage at farmingdale.edu/~gordonsp.
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		15		49		48.69																A  =		67.5																														-0.01		0.0000

		32		48		48.01																																																0.31		0.0961

		46		49		48.69																B  =		19.5																														0.54		0.2908

		60		51		50.46																																																0.78		0.6140

		74		54		53.22																C  =		365																														2.35		5.5071

		91		60		57.65																																																2.04		4.1819

		105		64		61.96																D  =		213																														1.75		3.0685

		121		69		67.25																																																1.09		1.1897

		135		73		71.91																																																-2.20		4.8467

		152		75		77.20																																																-3.96		15.6689

		166		77		80.96																																																-4.29		18.3933

		182		80		84.29																																																-3.17		10.0550

		196		83		86.17																																																0.00		0.0000

		213		87		87.00																																																0.56		0.3176

		227		87		86.44																																																-0.29		0.0834

		244		84		84.29																																																-1.44		2.0625

		258		80		81.44																The Sum of the Squares =								96.79																								-3.20		10.2498

		274		74		77.20																																																-2.88		8.3169

		288		70		72.88																																																-2.25		5.0547

		305		65		67.25																																																-1.60		2.5658

		319		61		62.60																																																-0.65		0.4268

		335		57		57.65																																																-0.92		0.8477

		349		53		53.92																																																-1.63		2.6456

		365		49		50.63																																																0.00		0.0000

						0.00																																																0.00		0.0000

						0.00
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Start

		Derivatives of Exponential Functions

																		1

				This graphing utility lets you find the

				base b of the exponential function

								y = bx

				whose derivative is equal to itself.

		Select the value for the base b (1 to 5):

						2.6		160

		Click each item below for suggestions and investigations

		Item 1						3										The graph of the exponential function y =										2.6		x

		Item 2

		Item 3																		versus its derivative function y'

																								Sum of the squares =						10.9398080306

		Click on the tab below marked "Finer Value" to improve on this.
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Finer Detail

		Derivatives of Exponential Functions

																		1

				This graphing utility lets you find the

				base b of the exponential function

								y = bx

				whose derivative is equal to itself.

		Select the value for the base b (2.71 to 2.73):

						2.7180		80

		Click each item below for suggestions and investigations

		Item 1						1

		Item 2						4										The graph of the exponential function y =										2.718		x

		Item 3

																				versus its derivative function y'



(1) For different values of the base b, this program graphs the exponential function y = bx (in blue) as well as the corresponding derivative function (in orange).  You should notice that the derivative function also looks like an exponential function.  For some values of b, the derivative function is below the original function and for others it is above the original function.

(2)  The objective here is to try to find the value for the base b that has the special property that the derivative of y = bx is the same as the function itself.  Use the slider to locate the correct value of b, as accurately as possible, that has this property.

(3)   Realize that the further you are from the y-axis, the further apart the two curves are.  Therefore, to get perfect agreement for all values of x, you need a very high degree of accuracy. 
      Click on the tab below marked "Finer Detail" to shift to a different screen in which you zoom in on the graph to extend this investigation to find the right base b so that the derivative of the exponential function is identically equal to itself.



Finer Detail

		1		1

		4		4



2.718

2.7177181862

54.5755108506

54.5698522285



Sheet3

		1st sheet										x		b^x		derivative								deltax =		0.03		x		b^x		derivative								deltax =

		0		1		0.955511445						0		1		0.955511445		0.0019792315										0		1		0.9998963157		0.0000000108

		3		17.576		16.7940691578						0.03		1.0290801483		0.9832978596		0.002096018										0.03		1.0304513287		1.0303444871		0.0000000114

												0.06		1.0590059517		1.0118923072		0.0022196955		Sum of squares =				10.9398080306				0.06		1.0618299408		1.0617198458		0.0000000121		Sum of squares =				0.0000742614

												0.09		1.0898020018		1.0413182856		0.0023506707										0.09		1.0941640734		1.0940506258		0.0000000129

		2nd sheet										0.12		1.1214936057		1.0715999758		0.0024893743										0.12		1.1274828232		1.127365921		0.0000000137

		1		2.718		2.7177181862						0.15		1.1541068061		1.102762262		0.0026362622										0.15		1.1618161733		1.1616957112		0.0000000145

		4		54.5755108506		54.5698522285						0.18		1.1876684032		1.1348307522		0.0027918174										0.18		1.1971950195		1.1970708892		0.0000000154

												0.21		1.2222059765		1.1678317988		0.0029565512										0.21		1.2336511985		1.2335232883		0.0000000164

												0.24		1.2577479076		1.2017925207		0.0031310053										0.24		1.2712175167		1.2710857114		0.0000000174

												0.27		1.2943234033		1.2367408255		0.0033157533										0.27		1.3099277791		1.3097919602		0.0000000184

												0.3		1.3319625199		1.2727054321		0.0035114025										0.3		1.3498168205		1.3496768657		0.0000000196

												0.33		1.3706961875		1.3097158949		0.0037185961										0.33		1.3909205362		1.3907763196		0.0000000208

												0.36		1.410556236		1.3478026273		0.0039380154										0.36		1.4332759146		1.4331273065		0.0000000221

												0.39		1.4515754206		1.3869969277		0.0041703817										0.39		1.4769210706		1.4767679371		0.0000000234

												0.42		1.4937874491		1.4273310041		0.0044164591										0.42		1.5218952796		1.521737483		0.0000000249

												0.45		1.5372270097		1.4688380014		0.0046770565										0.45		1.568239013		1.5680764113		0.0000000264

												0.48		1.5819297991		1.5115520283		0.0049530306										0.48		1.6159939747		1.6158264215		0.0000000281

												0.51		1.6279325524		1.5555081855		0.0052452889										0.51		1.6652031384		1.665030483		0.0000000298

												0.54		1.6752730724		1.6007425943		0.0055547922										0.54		1.7159107865		1.7157328735		0.0000000317

												0.57		1.7239902619		1.6472924263		0.005882558										0.57		1.7681625499		1.7679792192		0.0000000336

												0.6		1.7741241544		1.6951959344		0.0062296639										0.6		1.8220054489		1.8218165356		0.0000000357

												0.63		1.825715948		1.7444924837		0.0065972512										0.63		1.8774879357		1.8772932697		0.0000000379

												0.66		1.8788080386		1.7952225838		0.0069865282										0.66		1.934659938		1.9344593442		0.0000000402

												0.69		1.933444055		1.8474279229		0.007398775										0.69		1.9935729037		1.9933662015		0.0000000427

												0.72		1.9896688949		1.9011514009		0.0078353467										0.72		2.0542798474		2.0540668509		0.0000000454

												0.75		2.0475287615		1.9564371656		0.0082976788										0.75		2.1168353983		2.1166159158		0.0000000482

												0.78		2.1070712016		2.0133306486		0.0087872913										0.78		2.1812958488		2.1810696828		0.0000000512

												0.81		2.1683451447		2.0718786025		0.0093057938										0.81		2.2477192057		2.2474861526		0.0000000543

												0.84		2.2314009431		2.1321291396		0.009854891										0.84		2.3161652421		2.3159250922		0.0000000577

												0.87		2.2962904135		2.1941317712		0.0104363882										0.87		2.3866955512		2.3864480884		0.0000000612

												0.9		2.3630668793		2.2579374486		0.0110521972										0.9		2.4593736019		2.4591186036		0.000000065

												0.93		2.4317852147		2.3235986045		0.0117043426										0.93		2.5342647959		2.5340020325		0.000000069

												0.96		2.5025018894		2.3911691966		0.0123949685										0.96		2.6114365262		2.6111657613		0.0000000733

												0.99		2.5752750156		2.4607047515		0.0131263454										0.99		2.6909582382		2.6906792282		0.0000000778

												1.02		2.650164395		2.5322624106		0.0139008779										1.02		2.7729014921		2.7726139858		0.0000000827

												1.05		2.7272315687		2.6059009771		0.0147211125										1.05		2.8573400269		2.8570437656		0.0000000878

												1.08		2.8065398673		2.6816809641		0.0155897457										1.08		2.9443498272		2.9440445445		0.0000000932

												1.11		2.8881544629		2.7596646443		0.0165096335										1.11		3.0340091916		3.0336946126		0.000000099

												1.14		2.9721424231		2.8399161015		0.0174838001										1.14		3.1263988028		3.1260746444		0.0000001051

												1.17		3.0585727656		2.922501283		0.0185154484										1.17		3.2216018004		3.221267771		0.0000001116

												1.2		3.1475165153		3.0074880538		0.01960797										1.2		3.3197038558		3.3193596547		0.0000001185

												1.23		3.2390467624		3.0949462525		0.020764957										1.23		3.4207932491		3.4204385666		0.0000001258

												1.26		3.3332387227		3.1849477486		0.021990213										1.26		3.5249609487		3.5245954657		0.0000001336

												1.29		3.4301697992		3.2775665015		0.0232877665										1.29		3.6323006932		3.6319240808		0.0000001418

												1.32		3.5299196457		3.3728786215		0.0246618833										1.32		3.7429090755		3.7425209948		0.0000001506

												1.35		3.6325702326		3.4709624321		0.0261170812										1.35		3.8568856301		3.8564857317		0.0000001599

												1.38		3.7382059138		3.5718985345		0.0276581444										1.38		3.9743329222		3.9739208464		0.0000001698

												1.41		3.8469134962		3.6757698737		0.0292901395										1.41		4.0953566404		4.0949320163		0.0000001803

												1.44		3.9587823113		3.7826618068		0.0310184321										1.44		4.2200656916		4.2196281371		0.0000001915

												1.47		4.0739042881		3.8926621733		0.0328487042										1.47		4.3485722991		4.3481214205		0.0000002033

												1.5		4.1923740291		4.0058613667		0.0347869733										1.5		4.4809921035		4.4805274951		0.0000002159

												1.53		4.3142888877		4.1223524094		0.0368396117										1.53		4.617444267		4.6169655106		0.0000002292

												1.56		4.4397490485		4.2422310289		0.0390133681										1.56		4.7580515801		4.757558245		0.0000002434

												1.59		4.5688576094		4.3655957365		0.041315389										1.59		4.9029405728		4.9024322149		0.0000002584

												1.62		4.7017206664		4.492547908		0.0437532428										1.62		5.0522416277		5.0517177898		0.0000002744

												1.65		4.8384474007		4.6231918676		0.0463349446										1.65		5.2060890982		5.2055493087		0.0000002914

												1.68		4.9791501688		4.7576349728		0.0490689821										1.68		5.3646214286		5.3640652017		0.0000003094

												1.71		5.1239445943		4.8959877035		0.051964344										1.71		5.5279812791		5.5274081144		0.0000003285

												1.74		5.2729496631		5.0383637522		0.0550305496										1.74		5.6963156541		5.6957250357		0.0000003488

												1.77		5.4262878215		5.1848801174		0.0582776796										1.77		5.8697760344		5.869167431		0.0000003704

												1.8		5.5840850762		5.3356572003		0.0617164095										1.8		6.0485185138		6.0478913776		0.0000003933

												1.83		5.7464710985		5.4908189031		0.065358045										1.83		6.2327039393		6.2320577059		0.0000004176

												1.86		5.9135793304		5.6504927313		0.0692145586										1.86		6.4224980556		6.4218321436		0.0000004434

												1.89		6.0855470945		5.814809898		0.0732986295										1.89		6.618071655		6.617385465		0.0000004709

												1.92		6.2625157066		5.9839054323		0.0776236849										1.92		6.8196007303		6.818893645		0.0000005

												1.95		6.4446305923		6.1579182899		0.0822039443										1.95		7.0272666338		7.0265380167		0.0000005309

												1.98		6.6320414058		6.3369914672		0.0870544663										1.98		7.2412562399		7.2405054355		0.0000005637

												2.01		6.8249021536		6.521272119		0.0921911979										2.01		7.4617621139		7.4609884465		0.0000005986

												2.04		7.0233713206		6.7109116795		0.0976310273										2.04		7.6889826847		7.6881854581		0.0000006356

												2.07		7.2276120004		6.9060659866		0.103391839										2.07		7.9231224238		7.9223009206		0.0000006749

												2.1		7.4377920294		7.1068954098		0.1094925728										2.1		8.164392029		8.16354551		0.0000007166

												2.13		7.6540841248		7.3135649825		0.1159532863										2.13		8.4130086144		8.4121363177		0.0000007609

												2.16		7.8766660265		7.526244537		0.1227952203										2.16		8.669195905		8.6682970458		0.0000008079

												2.19		8.1057206429		7.7451088445		0.1300408692										2.19		8.9331844391		8.9322582084		0.0000008579

												2.22		8.3414362015		7.9703377585		0.1377140544										2.22		9.2052117748		9.2042573391		0.0000009109

												2.25		8.5840064035		8.2021163628		0.1458400032										2.25		9.4855227043		9.4845392048		0.0000009673

												2.28		8.833630583		8.4406351232		0.1544454314										2.28		9.7743694741		9.7733560257		0.0000010271

												2.31		9.0905138706		8.6860900446		0.1635586311										2.31		10.0720120118		10.0709677026		0.0000010906

												2.34		9.3548673624		8.9386828315		0.1732095638										2.34		10.3787181602		10.3776420504		0.000001158

												2.37		9.6269082929		9.1986210541		0.1834299589										2.37		10.6947639184		10.6936550396		0.0000012296

												2.4		9.906860214		9.4661183187		0.1942534182										2.4		11.0204336899		11.0192910443		0.0000013056

												2.43		10.1949531785		9.7413944435		0.205715526										2.43		11.3560205386		11.3548430979		0.0000013864

												2.46		10.4914239291		10.0246756389		0.2178539664										2.46		11.7018264528		11.7006131574		0.0000014721

												2.49		10.7965160931		10.3161946934		0.230708647										2.49		12.0581626165		12.0569123747		0.0000015631

												2.52		11.1104803825		10.6161911653		0.2443218303										2.52		12.4253496898		12.4240613765		0.0000016598

												2.55		11.4335748001		10.924911579		0.2587382724										2.55		12.8037180975		12.8023905533		0.0000017624

												2.58		11.7660648512		11.2426096282		0.2740053704										2.58		13.1936083258		13.1922403562		0.0000018713

												2.61		12.1082237623		11.5695463838		0.2901733181										2.61		13.5953712297		13.5939616035		0.000001987

												2.64		12.4603327053		11.9059905088		0.3072952709										2.64		14.0093683478		14.0079157967		0.0000021099

												2.67		12.8226810286		12.2522184788		0.3254275208										2.67		14.4359722283		14.434475445		0.0000022404

												2.7		13.1955664949		12.6085148095		0.3446296813										2.7		14.8755667637		14.8740244014		0.0000023789

												2.73		13.5792955258		12.9751722903		0.3649648837										2.73		15.3285475368		15.3269582076		0.000002526

												2.76		13.9741834539		13.3524922251		0.3864999839										2.76		15.7953221764		15.7936844499		0.0000026821

												2.79		14.3805547815		13.7407846796		0.4093057833										2.79		16.2763107239		16.2746231265		0.000002848

												2.82		14.7987434476		14.1403687362		0.4334572606										2.82		16.7719460118		16.7702070248		0.0000030241

												2.85		15.2290931021		14.5515727565		0.4590338188										2.85		17.2826740528		17.2808821113		0.0000032111

												2.88		15.6719573885		14.9747346507		0.4861195461										2.88		17.8089544412		17.8071079327		0.0000034096

												2.91		16.1277002339		15.4102021555		0.5148034926										2.91		18.3512607667		18.3493580296		0.0000036204

												2.94		16.5966961489		15.8583331199		0.5451799626										2.94		18.9100810404		18.9081203624		0.0000038443

												2.97		17.0793305347		16.3194957993		0.5773488251										2.97		19.4859181339		19.4838977507		0.0000040819

												3		17.576		16.7940691578		0.611415842										3		20.079290232		20.0772083254		0.0000043343



(1) Continue the investigation in this zoomed in view (with x between 2 and 4 instead of 0 to 5) to get a more accurate estimate for the particular base b needed so that the derivative of y = bx is identical to y = bx.

(2)  The partiuclar base b that has this special property is the irrational number 2.718281828459045… » 2.71828.  This number is denoted by e and the corresponding exponential function is y = ex, so that y' = ex also.

(3)   Click on the tab below marked "Start" to shift to the original screen where you started this investigation.
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		x		y		Sinusoidal														In  Y  =  A + B cos (2p/C (t - D))																																		-2.13		4.5284

		1		50		52.13																																																-0.71		0.5022

		15		49		49.71																A  =		67.5																														-0.16		0.0263

		32		48		48.16																																																0.88		0.7710

		46		49		48.12																B  =		19.5																														1.80		3.2340
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		244		84		85.62																																																-3.37		11.3832

		258		80		83.37																The Sum of the Squares =								276.78																								-5.70		32.4389

		274		74		79.70																																																-5.71		32.6210

		288		70		75.71																																																-5.26		27.6682

		305		65		70.26																																																-4.57		20.9126

		319		61		65.57																																																-3.37		11.3464

		335		57		60.37																																																-3.24		10.5160

		349		53		56.24																																																-3.34		11.1348

		365		49		52.34																																																0.00		0.0000
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