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Abstract  We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral.  Particular cases considered include examples where the integral is improper, such as an elliptic integral.
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Many of us tend to think of Taylor’s theorem as the capstone for the first year of calculus.  But, if it is truly a capstone, then it should provide some broader perspectives on and deeper insights into topics that were previously encountered.  Unfortunately, too few of us take the time to take advantage of some of these opportunities and not all of these opportunities are well known.  For instance, in an earlier article [1], the author examined the use of Taylor approximations to provide insight into some of the standard limits that arise in calculus, not just to focus on techniques and tricks, such as l’H SEQ CHAPTER \h \r 1ôpital’s rule, that find the values of such limits.  In a more recent article [2], the author investigated ways in which one can look back at the derivative tests for extrema (as well as derivative tests for points of inflections) from the point of view of Taylor approximations. 
In the present article, we look at how the use of Taylor polynomial approximations can provide additional insights into, and tools for dealing with, definite integrals.  Specifically, we consider two often troublesome cases, one where antideriva​tives for the integrand do not exist in closed form, so that the fundamental theorem of calculus cannot be used, and the other where we need to evaluate improper integrals.


Consider the definite integral
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which is essentially the integral needed to evaluate probabilities involving a normal distribution, something that comes up in most areas of human endeavor.  Since the integrand 
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does not have an antiderivative, this integral can only be evaluated using numerical integration methods.  In Table 1, we show the results of using a variety of common methods – left-hand Riemann sums (LHS), right-hand Riemann sums (RHS), the midpoint rule (MID), the trapezoid rule (TRAP), and Simpson’s rule (SIMP) – with a program for the TI-86 calculator along with the total time it took to perform the calculations.  Based on these results, we see that the value of the above definite integral is 0.7468241, correct to seven decimal places.  

	n
	100
	200
	500
	1000
	2000

	LHS(n)
	0.7499786
	0.7484029
	0.7474560
	0.7471401
	0.7469821

	RHS(n)
	0.7436574
	0.7452423
	0.7461918
	0.7465080
	0.7466661

	MID(n)
	0.7468272
	0.7468249
	0.7468243
	0.7468242
	0.7468241

	TRAP(n) 
	0.7468180
	0.7468226
	0.7468239
	0.7468241
	0.7468241

	SIMP(n)
	0.7468241
	0.7468241
	0.7468241
	0.7468241
	0.7468241

	Total time 
	28 sec
	55 sec
	130 sec
	4 min, 22 sec
	8 min, 47 sec


Table 1:  Numerical approximations to 
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 using various standard procedures

If one uses one of the more powerful methods, such as Simpson’s rule, the convergence is quite rapid.  However, if one insists on using a more basic approach such as a simple Riemann sum, convergence can be very slow and the process quite drawn out.


As an alternative to approximating the definite integral, however, consider the possibility of approximating the integrand through the use of Taylor polynomial approximations.  In particular, we can use the fact that
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to approximate the original definite integral with another that is presumably close in value and which can be integrated in closed form.  For instance,
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and
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Although the results so far only give two digit accuracy, it is clear that the process can be continued indefinitely, giving an improved estimate with each increase in the degree of the approximating polynomial. In fact, there is a simple pattern to the coefficients of each new term in each successive approximation.  Notice that the coefficient of x5 is divided by 10 = 5 × 2, that of x7 is divided by 42 = 7 × 6 = 7 ( 3!, and that of x9 is divided by 216 = 9 × 24 = 9 ( 4!.  The following approximation, based on a tenth degree Taylor polynomial, turns out to be:  0.7474868 – 1/[11(5!)] = 0.7467292, which is correct to three decimal places.  Successive approximations will converge rather rapidly to the correct value since each additional term will contribute a significantly smaller adjustment to the estimate; in particular, 1/[13(6!)] = 0.0001068 and 1/[15(7!)] = 0.0000132275.

The same principle can be applied to any definite integral for which the integrand has Taylor polynomial approximations of all necessary orders.

Evaluating an Improper Integral
We next consider a number of examples involving the evaluation of improper integrals.  We begin with the improper integral
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which is known as the sine-integral function [3] and is written Si(t).   This function arises in many applications, such as in optics.  In particular, suppose we consider the case with t = 1, so that we need to evaluate the definite integral

S(1)  = 
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We note that the integrand is not defined at x = 0.  The usual approach, as we teach in first year calculus, is to avoid the singularity by using a lower limit of integration b which is slightly larger than 0,

Ib  = 
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and then taking the limit as b → 0+.  However, there is no elementary antiderivative for the integrand, so we must resort to some numerical integration process to approximate the value of the improper integral. Using the built-in numerical integration routine in the TI-86’s Calculus menu, we obtain the sequence of estimates Ib shown in Table 2 for various values of b approaching 0:

	b
	Ib

	0.01
	0.93608313

	0.001
	0.94508307

	0.0001
	0.94598307

	0.00001
	0.94607307

	0.000001
	0.94608207

	0.0000001
	0.94608297

	0.00000001
	0.94608306

	0.000000001
	0.94608307

	0.0000000001
	0.94608307


 Table 2:  Successive approximations to Ib  = 
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 as b → 0
From this table, we conclude that the value of the definite integral is 0.94608307, correct to 8 decimal places.  However, to achieve that level of accuracy, we have to push the lower limit of integration b very close to x = 0 and this is a fairly time intensive process.  


Alternatively, we can approximate the integrand with a sequence of successive Taylor polynomials, each of which is easily integrable.  Thus, for instance,
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so that
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Similarly, 
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so that 
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By this point, the pattern in the successive terms becomes quite evident and we therefore obtain


[image: image16.wmf]1

0

sin

111

33!55!77!

10.94608276

x

x

dx

×××

»-=

+-

ò

,


[image: image17.wmf]1

0

sin

1111

33!55!77!99!

10.94608307

x

x

dx

××××

»-+=

+-

ò

,


[image: image18.wmf]1

0

sin

11111

33!55!77!99!1111!

10.94608307

x

x

dx

×××××

»-+-=

+-

ò

,
the identical result obtained before, but considerably more easily.

As a second example, consider the problem of calculating the arc length of the ellipse 
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We note that, while there is a simple formula for the area of an ellipse (A = (ab), there is no formula for the circumference.  Consequently, we will have to use a definite integral to calculate this arc length. Because of the symmetry of the ellipse, we actually need to find the length of the perimeter of just one-quarter of the ellipse.  The usual formula for the length of arc of a function f between x = a and x = b is
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If we start with the equation of the ellipse and solve for y in terms of x, we obtain
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 = f(x).
Since we will consider only the quarter of the ellipse in the first quadrant, we use the positive root.  Therefore,
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Consequently, 
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which is not defined at x = (4.   We show the graph of the square root of this function, which becomes our integrand in the definite integral below, in Figure 1. There is a clear singularity at x = 4 and, since this function involves the derivative of the function for the upper half of the ellipse, this singularity corresponds to the fact that the tangent line to the ellipse at the right-hand vertex is vertical.  

Since this ellipse extends from x = -4 to x = 4, the total length of arc L of the ellipse is
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,
which is not defined at the upper limit of integration.  We will look at two ways to estimate the value of this improper integral.

Our first approach is the relatively straightforward one usually discussed in Calculus II in which we estimate the value of the improper integral by stopping short of the endpoint at some point x = b < 4 , so that we would consider 
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.  
We show some results, to five decimal accuracy, as b → 4-, in Table 3.

	b
	Lb

	3.9
	19.39736

	3.99
	21.25424

	3.999
	21.83514

	3.9999
	22.01864

	3.99999
	22.07666

	3.999999
	22.09501

	3.9999999
	22.10170




Table 3:  Successive approximations to Lb as b → 4-
Clearly, there should be a definitive value for this arc length Lb.  However, even getting as close to x = 4 as x = 3.9999999 does not provide us with anything more accurate than perhaps the first decimal place.  The convergence (if the sequence of approximations is in fact converging, which is not really apparent from these entries yet) is extremely slow and, in fact, at some point, should we push these calculations far enough, the successive approximations will likely begin to diverge rapidly as we get too close to the singularity at x = 4.  (One lesson to be learned from this experience is that the ideas we typically introduce in Calculus II on evaluating improper integrals may be naively simplistic when applied to a realistic, albeit somewhat complicated, situation.)

Before going on to consider the use of Taylor approximations to the integrand, we first consider an approach used by one of the author’s Calculus II students in a project to estimate the circumference of an ellipse.  As shown in Figure 2, we can presumably calculate a fairly accurate value for the portion of the circumference from x = 0 to x = b, when b is fairly close to the vertex x = 4.  We can then connect the end-point of this arc of the ellipse to the vertex with a short diagonal line and use the distance formula to obtain an estimate, likely a fairly accurate one, for the remaining portion of the elliptic arc.  The closer that b is to the vertex, the shorter the remaining arc and the closer its distance is to the length of that arc.  In Table 4, we extend Table 3 to include columns for the length of this line segment (the adjustment) and the total arc length estimate for each of the values of b. 
	b
	Lb
	Segment
	Total

	3.9
	19.39736
	0.674073
	20.07143

	3.99
	21.25424
	0.212235
	21.46648

	3.999
	21.83514
	0.067085
	21.90223

	3.9999
	22.01864
	0.021213
	22.03985

	3.99999
	22.07666
	0.006708
	22.08337

	3.999999
	22.09501
	0.002121
	22.09713

	3.9999999
	22.10170
	0.000671
	22.10237


Table 4:  Successive approximations to Lb as b → 4- with adjustment
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We observe that the adjustment for the line segment improves the accuracy of each approximation, though the rate of convergence with this correction is still rather slow.


We now consider using a Taylor polynomial approximation to the integrand.  If we expand this function, using CAS technology such as a TI-89 calculator or Derive, Maple, or Mathematica, we obtain the following successive Taylor approximations:


[image: image26.wmf]2

2

9

()()4

128

x

fxTx

»=+

,

[image: image27.wmf]24

4

9495

()()4

128131072

xx

fxTx

»=++

,

[image: image28.wmf]246246

6

71726

949513977949513977

()()44

12813107267108864222

xxxxxx

fxTx

»=+++=+++

,

and so forth.  Each of these approximating functions can be integrated fairly simply on the interval [0, 4], since none of them leads to an improper integral.  The corresponding values are

I2  =  17.5,
I4  =  18.27344,
I6  =  18.76092,
and this process can easily be extended.  For instance, the next approximation turns out to be I8  =  19.10235.  

As before, we have a sequence of successive approximations that converge, although again very slowly, to the value for the circumference of the ellipse.  The moral to the story here is that this seemingly innocuous problem of finding the circumference of an ellipse is actually a rather surprisingly difficult problem computationally.  In fact, it is this problem that led to the development of the field of mathematics known as elliptic integrals.

We note that this same process can be applied to any improper integral for which the integrand has Taylor polynomial approximations of all reasonable orders.
Pedagogical Considerations

The ideas discussed in this article could form the basis for a series of computer laboratory experiments if one has a laboratory component in a Calculus II course.  They could also be used as a series of guided individual or group project assignments.  In each case, these investigations would simultaneously provide students with some different and deeper insights into the importance and uses of Taylor approximations, a review or refresher of important ideas seen previously in calculus, and give students a realization of some of the practical limitations of the various standard methods.  Alternatively, these investigations could be assigned in Calculus III, when one introduces multivariate Taylor approximations or even in Advanced Calculus, when Taylor approximations and Taylor’s theorem are revisited in a more sophisticated context.
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Legends

Figure 1:  Graph of the integrand for the ellipse's arc length
Figure 2:  Graph of the ellipse with partial arc length plus a linear adjustment
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